
BROUGHT TO YOU IN PARTNERSHIP WITH

1

387

 © DZONE | REFCARD | OCTOBER 2023

Getting Started With
CI/CD Pipeline Security
CO-UPDATED BY COLLIN CHAU
SENIOR PRINCIPAL PORTFOLIO MARKETING, RED HAT

CO-UPDATED BY MICHAEL FOSTER
PRINCIPAL PRODUCT MARKETING MANAGER, RED HAT

ORIGINAL BY SUDIP SENGUPTA
PRINCIPAL ARCHITECT & TECHNICAL WRITER, JAVELYNN

CONTENTS

• Key Aspects of Securing
CI/CD Pipelines

• Common CI/CD Pipeline
Security Threats

− Challenges With Securing
CI/CD Pipelines

• Administering Comprehensive
Security on CI/CD Pipelines

− Steps to Ensure CI/CD
Pipeline Security

− Getting Started: Build an
Open-Source Stack for CI/CD
Pipeline Security

• Conclusion and Additional Resources

A continuous integration/continuous delivery (CI/CD) pipeline is an

agile workflow that automates the code, build, test, and deploy cycles

of application delivery. While automated deployment cycles enable

developers to release new features and updates rapidly, CI/CD pipelines

are commonly targeted by attackers who are looking to exploit

vulnerabilities and inject malicious code into application workflows.

A compromised pipeline often has severe consequences, such as an

attacker gaining access to sensitive data and even controlling the

release of new software versions.

In this Refcard, we discuss the key aspects and challenges of securing

CI/CD pipelines as well as the fundamental steps to administer security

on CI/CD pipelines.

KEY ASPECTS OF SECURING CI/CD PIPELINES
A DevOps workflow is typically characterized by its non-traditional

approach to security. This is often because the security of a DevOps

workflow is not centralized or does not follow the same approach

as other workflows. Instead, securing a DevOps workflow is often

distributed among various tools and processes, and across teams.

Figure 1: Key aspects of securing CI/CD pipelines

Securing the CI/CD pipeline at every stage requires a thorough

understanding of the core aspects, common threats, and challenges

for CI/CD security. Core aspects of CI/CD security include testing,

automation, source control, incident management, secrets

management, vulnerability scanning, and access control.

TESTING
Continuous application testing helps ensure software security and

quality without compromising delivery cycles. Besides inspecting

application source code, testing also relies on an iterative cycle of

identifying security flaws in third-party libraries, resource-level

conflicts, and misconfigurations at code time. It's also important to

employ the appropriate testing approaches that inspect flaws across

various stages of the CI/CD pipeline. These include:

1. Static tests – These tests can be run against code that isn't

yet deployed to production, making them extremely fast

and easy to automate. However, this testing mechanism

https://www.redhat.com/en/technologies/cloud-computing/openshift/advanced-cluster-security-kubernetes/cloud-service/trial?sc_cid=7013a000003SrjoAAC

Comprehensive security for
cloud-native applications

Red Hat Advanced Cluster Security Cloud Service – a fully
managed SaaS solution – enables organizations to securely
build, deploy, and run cloud-native applications anywhere.

Supply chain security

Shift security left with
developer-friendly guardrails
built into the CI/CD pipeline

Platform security

Secure the Kubernetes
platform leveraging native
controls that work with K8s

Workload security

Implement deploy- and
runtime policies to protect
workloads against threats

Start your free trial today
red.ht/cloud-native-security-trial

Start your trial!

https://www.redhat.com/en/technologies/cloud-computing/openshift/advanced-cluster-security-kubernetes/cloud-service/trial?sc_cid=7013a000003SrjoAAC

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH CI/CD PIPELINE SECURIT Y

 © DZONE | REFCARD | OCTOBER 2023 3

can only test for superficial defects, which lacks offering a

comprehensive picture of how the code will actually behave

in a production environment.

2. Dynamic tests – These tests, on the other hand, inspect

code during application runtime. This makes dynamic tests

slower and more difficult to automate, but they are efficient at

detecting flaws that static tests would normally miss. Dynamic

tests are further categorized into:

 − Load testing to ensure that the system can handle

heavy traffic

 − Stress testing to identify performance bottlenecks

 − Security testing to check for vulnerabilities

3. Penetration testing – This is a proactive approach used

in pre-production to simulate real-world attacks and offer

valuable insights into an organization's security posture.

The testing methodology also helps validate the strength of

security controls (e.g., firewalls, antivirus systems).

AUTOMATION
By automating the processes of building, testing, and deploying code,

you can ensure that only approved code is deployed to production.

Automated enforcement of security controls eliminates errors

associated with the manual execution of repetitive tasks while making

it easier to track changes and roll back if necessary.

To ensure systems operate on the most secure versions of software,

enterprises can also leverage automation for faster roll out of security

updates and patches. Besides automatically documenting and

recording system vulnerabilities, you can also leverage automation

platforms to configure notifications and alerts to flag security threats

as soon as they arise.

SOURCE CONTROL
One of the most powerful ways of enforcing code integrity is to use

source control systems that enable enterprise teams to securely

manage code changes, collaborate with cross-functional teams, and

resolve conflicts in code before committing changes. This approach

also helps prevent accidental or malicious changes from being

introduced into the codebase, which could potentially break the build

or cause other problems downstream.

Also commonly referred to as version control, source control involves

the configuration of access permissions to the codebase, ensuring only

the approved contributors are allowed to make code changes. This

guarantees that only authorized users have access to the codebase and

that all changes are tracked and audited.

Additionally, by using a centralized source control repository, you can

more easily automate code reviews and roll back changes to a safe,

declarative state if something does go wrong.

INCIDENT MANAGEMENT
Incidents are unplanned events that disrupt normal operations

by compromising the integrity of a system. In the context of CI/CD

pipelines, incidents can range from simple build failures to more

complex security breaches. Consequently, it's essential to formulate an

incident management process that encompasses various procedures

and tools to manage and respond to security events.

While the primary purpose of an incident management framework

is to reduce the impact of an event, it also helps alleviate the future

occurrence of similar incidents by helping recognize identical patterns

and fine-tuning alerting systems for expedited response. A typical

approach is also to hard-code incident response plans into workflow

tools, allowing for the automatic remediation of CI/CD security threats.

SECRETS MANAGEMENT
Managing secrets involves practices and procedures to securely

manage, store, and transmit confidential credentials, including

encryption keys, API keys, passwords, session tokens, database

connection strings and certificates. Effectively administered secrets

management maintains a fine balance between the ease of injecting

secrets and limiting data exposure. This essentially implies that

sensitive data remain confidential, while services can autonomously

use secrets to interconnect with other services or tools.

There are a few key things to keep in mind when managing secrets for

CI/CD pipelines:

• Always use strong encryption for storing and transmitting

secrets. This will help ensure that even if a malicious user

gains access to your secrets, they will not be able to read or

use them.

• Be sure to rotate your secrets regularly. This will help

prevent attackers from using old secrets that they may

have discovered.

• Make sure that only authorized users have access to your

secrets. This can be accomplished through role-based

access control (RBAC) or other authorization mechanisms.

• Use environment variables to store secrets as part of

your application code. This approach allows you to keep

secrets out of your code repository that prevent deeper

compromise of the system.

VULNERABILITY SCANNING
Automated vulnerability scanning helps teams enforce a shift-left

approach for security by identifying and remediating threats from early

stages of a development cycle. Remediating vulnerabilities typically

involves development teams detecting a flaw, assessing its impact

and severity, deploying a fix, and performing a determinative scan to

ensure the flaw no longer exists.

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH CI/CD PIPELINE SECURIT Y

 © DZONE | REFCARD | OCTOBER 2023 4

Since CI/CD pipelines are composed of numerous components and

dependencies, vulnerability scanning for CI/CD is oftentimes broken

down into:

• Source code scanning

• Third-party dependency scanning

• Container image scanning

• Infrastructure component scanning

To ensure all misconfigurations are appropriately attributed with their

impacts, a common practice is also to leverage databases of known

weaknesses. Some popular vulnerability databases include:

• Common Weakness Enumerations

• National Vulnerability Database

• OWASP's Top 10 CI/CD Vulnerabilities List

ACCESS CONTROL
One of the most important aspects of CI/CD security is making sure

all cluster endpoints are secured. Access control mechanisms help

mitigate the risk of data breaches by determining who has the privileges

to access specific data and resources of a pipeline.

Administering stricter policies requires users to verify their identity

before they are allowed to access sensitive information. Beyond

verifying a user's identity, access control policies also determine the

allowed actions by defining permissions granted for each user.

COMMON CI/CD PIPELINE SECURITY THREATS
As per OWASP, although there are emerging practices and tools to avert

security incidents, attackers continue to adapt novel techniques that

exploit the distributed complexity of a CI/CD framework.

Some common security threats of CI/CD pipelines include:

• Distributed denial-of-service (DDoS) attacks are

orchestrated by compromising the server, network, or

service by overwhelming it with a high number of requests/

internet traffic in a given time.

• Supply chain attacks focus on weak links in trusted

third-party vendors that offer tools and services to the

CI/CD pipeline.

• Dependency confusion attacks abuse flaws within

package managers to replace legitimate private packages

with malicious versions in public registries.

• Injection attacks are exploited over input validation errors

to inject unauthorized code into the application, which

ends up interpreting it as part of a command or a query.

• Remote code execution attacks are widely exploited

attacks executed through malicious code on remote

machines by connecting to them over insecure public and

private networks.

Table 1

COMMON CI/CD PIPELINE SECURITY THREATS

THREAT
TARGET CI/CD
PIPELINE STAGE ATTACK PATTERN

DDoS attacks Deployment Leveraging botnets to target
the victim server/network,
overwhelming it and resulting in a
denial of service

Supply chain
attacks

Build Injecting malicious code into
an open-source component to
compromise the entire tech stack

Dependency
confusion
attacks

Source and build Registering a package with a similar
name to the target app of a public
repository, which gets committed
to the pipeline every time a new
install occurs

Injection
attacks

Deployment Altering request URLs to change
the parameters of the resulting
database query, consequently
enabling unauthorized access of
restricted data

Remote code
execution
attacks

All Tricking the target user to install
arbitrary scripts on the host
machine, which are subsequently
executed to orchestrate deeper,
system-level attacks

CHALLENGES WITH SECURING CI/CD PIPELINES
Securing CI/CD is a complex practice that encompasses the

identification, remediation, and prevention of security risks across

each stage of a pipeline. While building a robust security posture is

the fundamental objective of the practice, the framework should also

continue to maintain the agility and pace of release cycles. As a result,

when compared to securing legacy frameworks, there are a number of

challenges with administering security on CI/CD pipelines, including:

• Improper secrets management

• Inconsistent approaches to microservices

• Inadequate security automation

• Conflicts between security and velocity

• Unauthorized access to code registries

• Developer and DevOps resistance

ADMINISTERING COMPREHENSIVE
SECURITY ON CI/CD PIPELINES
Apart from protecting data and code from potential breaches that

traverse through various endpoints of the pipeline, administering

security on CI/CD pipelines also helps maintain compliance and

prevent accidental issues such as data loss or corruption. In the

following section, we discuss the steps for effective CI/CD security

implementation and open-source tools to simplify the process.

https://cwe.mitre.org/
https://www.nist.gov/programs-projects/national-vulnerability-database-nvd
https://owasp.org/blog/2022/11/10/top-10-cicd.html
https://owasp.org/www-project-top-10-ci-cd-security-risks/

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH CI/CD PIPELINE SECURIT Y

 © DZONE | REFCARD | OCTOBER 2023 5

STEPS TO ENSURE CI/CD PIPELINE SECURITY
While the specifics of a CI/CD pipeline security strategy will differ by use

case, the process typically follows a similar workflow.

1. IMPLEMENT STRONG ACCESS CONTROLS
The first step toward securing a pipeline is to control and organize

access privileges. This essentially requires policy enforcement that

restricts every user of the organization to possess similar privileges for

accessing tools and resources within the CI/CD pipeline. Additionally,

those with permissions to access the pipeline should not be assigned

default permissions to view all resources and data within the pipeline.

Some approaches to help enforce access controls include:

• Configure identity and access management (IAM) – helps

configure digital identities and enforce access permissions at

the entity level

• Enforce role-based access controls (RBACs) – restricts users

to access data and resources based on the functions/tasks

associated with their roles

• Apply the principle of least privilege – limits a user's access

rights to strictly what is required to perform their job

2. SECURE ACCESS TO CODE REPOSITORIES
Since a code repository acts as the central storage, review, and

management system of the code used within a DevOps pipeline,

securing repos is the next step that requires key consideration.

Public code repos, or those lacking secure controls, are often

targets of malicious exploits that lead to code tampering and loss of

code integrity.

Approaches to securing code repositories include:

• Choose a trusted repository by providers with a reputation

for secure infrastructure administration and management

• Enforce the principle of least privilege for repository access

• Secure access credentials and separate them from source code

• Revoke access to the repository when it is no longer required

• Review all code changes before merging to the main branch

• Conceal personally identifying information when using

public repositories

• Enforce backup and disaster recovery for all code used

within the system

• Perform regular audits against security benchmarks

3. AVOID HARD-CODING SECRETS
Hard-coded passwords and secrets are common attack targets that

lead to data breaches and malicious access of pipeline resources.

Attackers typically target source codes within public repos and

identify hard-coded credentials through code scanning, guessing, and

learning. As a recommended practice, security admins should

implement policies to regulate the usage of hard-coded secrets into

application code. If secrets are to be parsed, they should be included

as variables in a .gitignore file, which keeps them from being

committed into the repository. For instance, before distributing secrets

in a Kubernetes cluster, secrets should first be encrypted at rest and

then stored in the ETCD server.

A conventional approach for achieving this is by encoding the secrets in

Base64 format as shown:

$ username=$(echo -n "default" | base64)
$ password=$(echo -n "a62fjbd37942dcs" | base64)

And then, defining the secrets:

echo "apiVersion: v1
> kind: Secret
> metadata:
> name: darwin-secret
> type: Opaque
> data:
> username: $username
> password: $password" >> secret.yaml

Following the above, you can now create the secret using the kubectl

create command:

$ kubectl create -f secret.yaml

4. PERFORM APPLICATION SECURITY TESTS
Once code repositories are secure and secrets are safely managed,

developers and security teams should collectively ensure the source

code is free of any vulnerabilities. This is accomplished through

a combination of tests that are deployed at each layer of CI/CD

workflows to automatically notify security teams upon detecting

pipeline vulnerabilities.

Figure 2: Security testing of a CI/CD pipeline

Automated tests can also be combined with automated remediation

tools that use the findings of security checks to safeguard pull requests

from attack vectors. In production-grade pipelines, a common

approach is also to engage external penetration testers to provide an

unbiased view of the pipeline's security posture and help identify flaws

that may have been missed by automated tests.

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH CI/CD PIPELINE SECURIT Y

 © DZONE | REFCARD | OCTOBER 2023 6

5. IMPLEMENT SECURITY-FOCUSED CI/CD WORKFLOWS
With pipeline steps and tasks stored in the same repository as their

code, DevOps practices automate continuous deployment

to an auditable, declarative state to avoid human error and

misconfiguration. Building security into container images is an integral

part of a CI/CD pipeline as it continuously scans for code integrity.

Auto-generated software bill of materials (SBOMs) for provenance can

now attest and verify open-source software components and their

transitive dependencies and take away manual toil.

Development teams need to stay consistent with industry standards

like Supply-chain Levels for Software Artifacts (SLSA). It is essential

to use default pipeline definitions with policy as code to prevent

deployment of suspicious build activity to production.

6. USE ROLLBACKS TO ENFORCE SECURITY IN
PRODUCTION PIPELINES
Once policies are framed to secure pipelines, the next stage focuses

on minimizing the consequences of a successful attack. This requires

the formulation of controls that help revert to earlier, stable versions of

an application if the current one is compromised. The ability to quickly

roll back an insecure application version also helps reduce application

downtimes while expediting patch cycles for faster remediation.

7. DETECT AND REMEDIATE THREATS AT RUNTIME
Beyond securing the pipeline and hardening the deployment, the

next stage focuses on detecting and thwarting a successful attack.

This requires having granular visibility into all process executions,

network flows, etc. to detect anomalous activity indicative of a threat.

By combining policy-based detection for common threats — such as

cryptomining, privilege escalations, and other exploits — with process

baselining of known, validated behavior, you can improve detection

fidelity and minimize false positives.

Since containers are immutable and applying patches to the running

environment will be temporary, it's critical that remediation efforts

happen in the pipeline that you're rebuilding and redeploying to your

containerized applications.

8. OUTLINE AN INCIDENT RESPONSE PLAN
Incident response plans strengthen a continuous testing process by

shortening the feedback loop of identifying and addressing CI/CD

security threats. Once potential security threats have been mapped

with their respective attack vectors, the incident response plan should

outline tools and processes to be used to restore normal operations.

Besides reducing the response time for a security event, response

plans should also tag a summary of related non-critical incidents that

may signal potential issues within the application, thereby helping

developers to fine-tune their code for security and performance.

9. LEVERAGE A SECURITY INFORMATION AND EVENT
MANAGEMENT TOOL
Security information and event management (SIEM) tools go beyond

incident response plans by offering granular indicators of various

events. For CI/CD security, SIEM tools perform three critical capabilities:

threat detection, event investigation, and response time reduction.

These tools aggregate and analyze telemetry data from different

resources of the CI/CD pipeline. The composite data is then stored,

normalized, and analyzed for threat detection and trend analysis.

When configuring an SIEM solution, security testers and developers

should also integrate a continuous testing and monitoring framework

for faster discovery of security breaches and remediation.

GETTING STARTED: BUILD AN OPEN-SOURCE
STACK FOR CI/CD PIPELINE SECURITY
Securing a CI/CD pipeline is a multi-pronged process that requires an

in-depth understanding of the tech stack's core aspects, changing

threat patterns, and inherent vulnerabilities.

Out of the number of tools available, below is a list of popular open-

source tools that are free, simplify the implementation of CI/CD

security, and offer comprehensive hardening solutions:

Table 2

OPEN-SOURCE TOOLS TO SECURE CI/CD PIPELINES

TOOL DESCRIPTION

Argo CD • Ensures robust security measures throughout the
CI/CD process, specified as code in the same git repo

• Automates continuous deployment to an auditable,
declarative stage without human error

• Follows GitOps patterns to monitor running apps from
their live state to a desired state

Backstage • Build self-service developer portals with a centralized
software catalog and community plug-ins

• Make use of standards based templates as golden
paths to auto-create security-focused microservices

Clair • Monitor container security with static analysis of
vulnerabilities in apps and docker containers

• Understand the impact radius of emerging CVEs to
alert on which existing layers are vulnerable

Falco • Threat detection in hosts and containers, and across
the cloud, to remain regulatory compliance

• Cloud-native security tools for Linux systems that
employ custom rules and metadata for real-time alerts

• Streaming detection at runtime that monitors for
abnormal behavior, configurations, and attacks

GUAC • Aggregates and synthesizes software security
metadata at scale, making it meaningful and
actionable

• Identifies gaps and threats in the software supply chain
and provides a path to remediation

HashiCorp
Vault

• Secrets management and data protection tool

• Securely stores and manages sensitive information
(e.g., credentials, encryption keys, API tokens)

https://slsa.dev/
https://argoproj.github.io/cd/
https://backstage.io/
https://github.com/quay/clair
https://falco.org/
https://guac.sh/
https://www.vaultproject.io/
https://www.vaultproject.io/

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH CI/CD PIPELINE SECURIT Y

 © DZONE | REFCARD | OCTOBER 2023 7

OPEN-SOURCE TOOLS TO SECURE CI/CD PIPELINES

TOOL DESCRIPTION

Keycloak • IAM built on top of industry-security-standard
protocols for modern apps/services

• Authentication using single sign-on with user
federation and management, and fine-grained
authorization

KubeLinter • Static analysis tool for Kubernetes YAML files

• Identifies misconfigurations and security issues in
Kubernetes configurations

• Proactively identifies and rectifies security risks in
Kubernetes deployments, improving overall
cluster security

Open Policy
Agent

• Flexible policy-driven control plane for cloud-
native environments

• Enables fine-grained policy enforcement across entire
cloud-native stack

• Helps enforce security policies, compliance, and
access control

OWASP
Dependecy-
Check

• Assesses vulnerabilities in software project
dependencies

• Scans and identifies known security issues in third-
party libraries and frameworks, aiding in informed
decision-making to mitigate risks

Project
Quay

• Includes the Clair vulnerability scanner and provides a
secure container registry

• Offers container image vulnerability analysis

• Ensures container integrity and safety

• Reduces the risk of deploying vulnerable containers
into prod environments

Project
Calico

• Networking solution for container-native deployments

• Enforces zero-trust, endpoint-level security
through GlobalNetworkPolicies to help secure
containerized hosts and workloads

• Helps secure in-cluster pod traffic with on-the-wire
encryption, enforcing data integrity without requiring
specialized hardware

Sigstore
Cosign

• Enhances container image and software artifact
security via digital signing

• Allows developers to sign and verify code and
container image integrity and authenticity

• Alleviates concerns of tampering and ensures
software's trustworthiness

Sigstore
Rekor

• Digital notary service for CI/CD pipeline code

• Ensures code authenticity and security, verifies origins
of third-party dependencies, offers transparency, and
automates verification

• With Gitsign, implements keyless Sigstore to sign
Git commits with a valid OpenID Connect identity to
tamper proof code

• Stores signing details in the Rekor transparency log for
subsequent verification

OPEN-SOURCE TOOLS TO SECURE CI/CD PIPELINES

TOOL DESCRIPTION

SonarQube • Tests against the most critical risk categories in app code

• Performs a static analysis of pull requests to ensure all
code entering the pipeline is free of threats found on
the OWASP Top 10 list of vulnerabilities

• Relies on a taint analysis mechanism to track and
detect malicious inputs in the DevOps workflow

• Offers an issue visualizer to inspect how vulnerabilities
flow within pipelines and guidance to identify root
causes and enforce stricter controls

StackRox • Integrates security directly into Kubernetes ecosystems
and CI/CD pipelines, providing real-time threat
detection, risk assessment, and policy enforcement

• Provides comprehensive security visibility and
automated responses to protect from vulnerabilities,
misconfigurations, and runtime threats

• Adheres to compliance standards (e.g., CIS
Benchmarks, PCI-DSS, HIPAA, NIST)

• Maps its functionalities to the MITRE ATTt&CK
Framework for Kubernetes

Syft • Analyzes container images and filesystems

• Performs comprehensive software component
inspections to identify vulnerabilities and report on
software bill of materials

• Shores up containerized app security posture, ensuring
containers are free from known vulnerabilities

Tekton
Chains

• Cloud- and Kubernetes-native CI/CD framework

• Isolates and segments pipeline stages, enforces
immutability to prevent unauthorized changes, and
maintains audit trails

• Manages secrets securely, offers fine-grained access
control, and integrates security scanning

Figure 3: Leverage open-source projects for security and compliance

CONCLUSION
Using CI/CD systems for production releases is one of the most

commonly established practices in modern application delivery. With

increasing adoption of DevOps practices, the foundational security

of CI/CD pipelines has come under greater scrutiny because they are

often the gateway to an organization's codebase and deployments,

https://www.keycloak.org/
https://github.com/stackrox/kube-linter
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-check/
https://www.projectquay.io/
https://www.projectquay.io/
https://www.tigera.io/project-calico/
https://www.tigera.io/project-calico/
https://www.sigstore.dev/
https://www.sigstore.dev/
https://docs.sigstore.dev/logging/overview/
https://docs.sigstore.dev/logging/overview/
https://docs.sigstore.dev/signing/gitsign/
https://openid.net/developers/how-connect-works/
https://www.sonarqube.org/
https://owasp.org/www-project-top-ten/
https://www.stackrox.io/
https://attack.mitre.org/matrices/enterprise/containers/
https://attack.mitre.org/matrices/enterprise/containers/
https://github.com/anchore/syft
https://tekton.dev/
https://tekton.dev/

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | GETTING STARTED WITH CI/CD PIPELINE SECURIT Y

 © DZONE | REFCARD | OCTOBER 2023 8

making them a common target for attackers, especially within their

software supply chain. There is clear evidence that security is a key

concern in cloud-native environments and Kubernetes, especially

when it comes to vulnerabilities and misconfigurations. Traditional

security measures to administer security on CI/CD-based workflows

are often insufficient. Consequently, a DevOps practice relies on the

implementation of granular policies across every stage of pipelines for

comprehensive security. Taking steps to integrate security guardrails

at every phase of the SDLC will help you audit and act on security

vulnerabilities early before it impacts user trust.

Additional resources:

• Continuous Delivery Pipeline Security Essentials Refcard by

Sudip Sengupta

• Advanced Cloud Security Refcard by Samir Behara

• Threat Detection for Containers Refcard by Boris Zaikin

• Cloud-Native Application Security Patterns and Anti-Patterns

Refcard by Samir Behara

• IaC Security Core Practices Refcard by Payton O'Neal

3343 Perimeter Hill Dr, Suite 100
Nashville, TN 37211

888.678.0399 | 919.678.0300

At DZone, we foster a collaborative environment that empowers developers and
tech professionals to share knowledge, build skills, and solve problems through
content, code, and community. We thoughtfully — and with intention — challenge
the status quo and value diverse perspectives so that, as one, we can inspire
positive change through technology.

Copyright © 2023 DZone. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by means
of electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

WRITTEN BY SUDIP SENGUPTA,
PRINCIPAL ARCHITECT & TECHNICAL WRITER, JAVELYNN

Sudip Sengupta is a TOGAF Certified Solutions
Architect with more than 18 years of experience
working for global majors such as CSC, Hewlett
Packard Enterprise, and DXC Technology. Sudip now
works as a full-time tech writer, focusing on Cloud, DevOps, SaaS,
and cybersecurity. When not writing or reading, he's likely on the
squash court or playing chess.

CO-UPDATED BY COLLIN CHAU,
SENIOR PRINCIPAL PORTFOLIO MARKETING, RED HAT

Collin has scaled DevOps engineers in their
continuous testing and application release
automation tooling, while enabling ITOps teams
to bridge and broker their hybrid cloud to deliver
features faster. While running AI/ML-assisted app
workloads over a data-driven platform, Collin has helped SREs
monitor and direct their IT estate's health and performance to
predict and prevent service failures at runtime.

CO-UPDATED BY MICHAEL FOSTER,
PRINCIPAL PRODUCT MARKETING MANAGER, RED HAT

Michael Foster is the Community Lead for the
open source StackRox project and Principal
Product Marketing Manager for Red Hat. Michael
wants organizations to leverage the open source
StackRox project in their Kubernetes environments and
join the open source community through stackrox.io. He holds a B.S.
in Chemical Engineering from Northeastern University and CKAD,
CKA, and CKS certifications.

https://dzone.com/refcardz/continuous-delivery-pipeline-security-essentials
https://dzone.com/refcardz/advanced-cloud-security
https://dzone.com/refcardz/threat-detection-for-containers
https://dzone.com/refcardz/cloud-native-application-security-1
https://dzone.com/refcardz/iac-security-1

