
Open source AI
for developers
A guide for planning and building AI-enabled applications

2

Contents

1 Open source and AI:
A transformative combination

4 Adopt advanced tools
and technologies for AI

2 Plan your
development strategy

3 Build innovative
AI-based applications

3.1	 Predictive AI

3.2	 Generative AI

3.3	 AI models in action

5 Ready, set, develop:
Start building AI-enabled applications

1

Introduction | Plan your strategy | Build AI-enabled apps | Adopt tools for AI | Get started

Open source and AI:
A transformative combination

Artificial intelligence (AI) and machine learning operations (MLOps)
are transforming applications and development processes.

Innovative solutions based on AI models offer new possibilities for creating content, enhancing
decision-making processes, and personalizing user experiences. Modern MLOps workflows streamline
integration, deployment, and management of AI models into production environments, ensuring
their reliability and performance. Together, AI and MLOps help developers become more agile and
respond rapidly to evolving business needs with dynamic applications, efficient workflows, and shorter
development cycles.

Open source AI tools offer significant benefits for development teams in terms of flexibility and
customization. These tools help developers modify and adapt intelligent applications to meet business
needs with tailored solutions. By encouraging collaboration within a broad community of users and
contributors, open source projects support continuous improvements and new feature development in
key AI technologies. This adaptability lets organizations customize AI tools to meet their requirements,
making them an ideal choice for projects that demand specialized functionality.

Who should read this e-book

This e-book is intended for beginner
and intermediate-level developers and
data scientists who want to apply open
source AI tools, platforms, and strategies
in their projects. It emphasizes practical
development aspects, guiding you
through model selection, integration,
refinement, and deployment to create
innovative, AI-based applications.

https://www.redhat.com/en/topics/ai
https://www.redhat.com/en/topics/ai/what-is-mlops

2

Introduction | Plan your strategy | Build AI-enabled apps | Adopt tools for AI | Get started

Plan your development strategy

A structured approach to developing AI-based applications is needed to achieve meaningful outcomes.
Each step in the process requires careful consideration to ensure that your application both meets
intended goals and also operates responsibly and efficiently. From setting clear objectives to selecting
a model and ensuring ethical practices, these steps help you create robust, reliable AI-based solutions.

Identify AI objectives. Begin by clearly outlining the problem your AI-based application aims
to address. Determine the specific tasks that your application needs to perform. These may
involve generation, classification, conversation, summarization, or code-related functions.1

2 Assess available data. Thoroughly assess your data, as t​​he quality and scope of your data
can determine the success of your model. Generative AI models typically require large training
datasets, while predictive AI models can be effective with smaller, labeled datasets. Ensure
that your data is relevant, diverse, and representative of the scenarios your application will
encounter. Address any gaps or biases in your data to avoid skewed or inaccurate outcomes.

3 Analyze AI tasks. Choose an AI approach based on your application’s requirements. Generative
AI models excel in nuanced language understanding, creative output, data augmentation,
and real-time interaction, making them ideal for content creation, conversational AI, and text
summarization. For structured tasks with well-defined outputs—including image segmentation
and fraud detection—predictive AI models like convolutional neural networks (CNNs) and
decision trees offer lower inference times for real-time applications. In some cases, combining
both approaches can be effective. For example, customer support chatbots can use predictive
AI models for intent classification and generative AI models for natural language processing.

4 Select appropriate models. Ready-to-use AI models from third-party application
programming interfaces (APIs) or managed services let you efficiently add advanced AI
features to applications. These models help you integrate complex functionalities like natural
language processing, image recognition, and predictive analytics without extensive AI or
machine learning expertise. By simplifying model training and maintenance processes, third-
party APIs and managed services help you offer AI features that boost user engagement and
application performance.

5 Ensure ethical compliance. AI-based applications often handle sensitive data and can
significantly influence decisions. Consider the ethical implications of your application’s actions
and predictions. Prioritize transparency, fairness, and accountability to avoid unintended
consequences and build trust with users.

https://www.redhat.com/en/topics/ai/what-is-generative-ai

3

Introduction | Plan your strategy | Build AI-enabled apps | Adopt tools for AI | Get started

Build innovative
AI-based applications

AI encompasses a range of technologies that serve different purposes. Among these, predictive AI and
generative AI are key technologies—each with distinct capabilities—for creating intelligent applications.
Predictive AI focuses on analyzing existing data to forecast future outcomes or trends. It uses historical
data to predict events, behaviors, or conditions, helping users make informed decisions based on
likely scenarios. In contrast, generative AI creates new content or data based on patterns learned
from existing information. It can generate text, images, or other media that resemble its training data,
providing innovative solutions for content creation and personalization. While predictive AI provides
insights into future possibilities, generative AI produces novel outputs from learned patterns.

Predictive AI
Building AI-based applications often begins with selecting the right model for the task. For predictive
AI, this involves choosing a pretrained model or architecture tailored to your needs. Common models
include ResNet for image classification, YOLO (You Only Look Once) for object detection, and Isolation
Forest for anomaly detection. When selecting a model, it’s essential to consider model size and
complexity in relation to inference speed (how fast a trained model makes predictions based on new
input data). If your organization has an established AI practice, you also have the option to build your own
predictive AI model using your company’s data. Open source libraries and deep learning frameworks—
like OpenCV, scikit-learn, TensorFlow, and PyTorch—can help you efficiently integrate your internal and
external models with AI-based applications.

Data preparation and model evaluation are critical next steps. By thoroughly analyzing your data,
you can better understand its characteristics and address any potential issues. Experimentation with
different model architectures or pretrained weights can help you find the optimal balance between
performance and inference speed. Rigorous validation on a separate test dataset helps ensure that
models generalize well.

After selecting and validating a model, refinement and deployment follow in the development process.
You may need to preprocess your data using techniques like resizing and normalization. When using
pretrained models, fine tuning on specific datasets is crucial. And in some cases, post-processing
techniques can improve model output. By monitoring model performance in production—including

https://www.redhat.com/en/topics/ai/rag-vs-fine-tuning#what-is-fine-tuning

4

Introduction | Plan your strategy | Build AI-enabled apps | Adopt tools for AI | Get started

inference response time and resource use—you can efficiently retrain and optimize your model to
maintain effectiveness. Monitoring models for data drift can help ensure that the data seen during
inferencing does not vary significantly from that data used to train or tune the model.

Because predictive AI models typically infer faster than generative AI models, they are often ideal for
real-time applications. By combining predictive AI with generative AI, you can create more complete
solutions. However, these solutions can result in increased model run time and complexity.

How to evaluate
and compare LLMs

1.	 Generate prompts.
Create a variety of prompts
to assess the creative and
generative capabilities. Refine
your prompts to elicit the best
responses and outputs for
various scenarios.

2.	 Experiment with data.
Test models with proprietary
data unique to your application.
Adjust prompts and settings to
optimize model performance for
specific tasks.

3.	 Benchmark performance.
Evaluate and compare model
performance using the results
of your experiments.

Evaluating model performance is crucial, as LLMs vary in
accuracy, fluency, and overall efficacy for tasks relevant
to your applications. Additionally, high-capability models
like GPT-3 and some Granite variants can require
significant computational resources, including expensive
graphics processing unit (GPU) resources, so it’s
essential to balance these needs against your available
infrastructure and budget. And with access to sufficient
high-quality data for fine tuning, you can ensure optimal
LLM performance that meets application requirements.

Frameworks like Langchain simplify the integration of
LLMs into applications, allowing you to focus on the
core application logic. These frameworks offer tools for
prompt engineering and model chaining, while enhancing
LLM-based components with memory or context.

After selecting the optimal LLM and frameworks,
you are ready to add generative capabilities into your
applications. This process involves refining the model’s
performance and crafting precise and effective
prompts that guide the AI to deliver desired outcomes.
Establishing robust feedback loops is crucial for
continuous improvement, ensuring the model adapts
and enhances its outputs over time.

Generative AI
The first step in developing applications based on generative AI is to select the appropriate large
language model (LLM). There are several open source options to choose from—including Bidirectional
Encoder Representations from Transformers (BERT), Text-to-Text Transfer Transformer (T5), and
Granite models—each offering unique strengths for different tasks. It’s important to select an LLM
that aligns to your application’s objectives. For instance, Granite-7B-Starter can be fine-tuned for
summarizing insurance-specific text that highlights risk factors, coverage, and liabilities, while BERT
excels in sentiment analysis.

https://www.redhat.com/en/topics/ai/what-are-large-language-models
https://www.redhat.com/en/topics/ai/what-are-large-language-models
https://huggingface.co/instructlab?sort_models=modified#models

5

Introduction | Plan your strategy | Build AI-enabled apps | Adopt tools for AI | Get started

Prompts help you instruct the LLM to generate the desired output. By creating clear, concise prompts,
using templates for structured instructions, and employing techniques like chaining to guide the LLM
through complex tasks, you can significantly enhance the model’s effectiveness. These strategies
ensure that AI models produce consistent and relevant responses, even in multistep interactions.

The reinforcement learning from human feedback (RLHF) loop is crucial for fine tuning your LLM. After
deploying your model, gather user interactions and use this feedback to refine the LLM performance.
This iterative process helps your model learn from mistakes and continuously improve, increasing its
ability to deliver accurate and relevant outputs as it adapts to real use cases.

Fine tuning further customizes pretrained LLMs to fit your specific domain or task. By training models
on smaller, task-specific datasets, you can enhance performance and customize outputs to meet
your application requirements. Tools like Hugging Face Transformers let you take advantage of the
pretrained model’s knowledge while refining it for your purposes. The model alignment method from
InstructLab helps you align the model’s outputs with your organizational values or user needs, ensuring
responses are accurate and contextually appropriate.

Retrieval-augmented generation (RAG) combines LLMs with information retrieval systems, allowing
models to access and incorporate relevant data from external sources during generation. This approach
improves the factual accuracy and coherence of the outputs and is often used when augmenting LLM
results with internal and corporate data. Langchain’s built-in RAG capabilities streamline this process,
especially when using Granite models to produce accurate and contextually relevant responses.

Agents are autonomous systems that operate within a defined environment to achieve specific goals.
By incorporating interactive and adaptive behaviors, these systems can dynamically modify their
operating context to respond to changing conditions. This allows them to handle complex tasks and
make real-time decisions. Developing these agents involves constructing multicomponent systems
that plan, execute, and evaluate actions based on AI model outputs. By orchestrating complex tasks—
including real-time decision making and external API and data source integration—you can enhance
your system’s operational capabilities.

Model chaining connects multiple AI models or processes into a cohesive workflow, where each model
builds on the outputs of the previous one. This approach allows you to develop applications capable
of handling complex tasks with multistep interactions. By using the capabilities of different models in a
coordinated sequence, you can build efficient systems tailored to your requirements.

By thoroughly evaluating your application’s workflow with the integrated AI, you
can ensure a user-friendly and efficient experience. Rigorous testing of the entire
system helps you identify and address any issues or inefficiencies, allowing you
to refine the application for improved functionality and usability. This iterative
process not only enhances performance but also aligns the application more
closely with user needs and expectations.

https://huggingface.co/docs/transformers/index
https://instructlab.ai/
https://www.redhat.com/en/topics/ai/what-is-retrieval-augmented-generation

6

Introduction | Plan your strategy | Build AI-enabled apps | Adopt tools for AI | Get started

AI models in action

Example 1: Customer support chatbot
	► Problem: Service organizations need to address customer questions and issues rapidly and
efficiently—all day, every day.

Build a chatbot using
third-party APIs

	► Model service: OpenAI ChatGPT
API via Quarkus REST Client

	► Additional considerations:
Intent classification and
knowledge base integration

	► Data: Chat logs, product documentation, and knowledge
base articles

	► Models: Granite-7B-Starter adapted for conversations
and intent classification, and enhanced with RAG for
knowledge retrieval

	► Ethical considerations: Ensuring data privacy,
mitigating bias, and providing transparency to users

	► Deployment and iteration: Deploy the chatbot,
monitor interactions, gather feedback, retrain models,
and update the knowledge base regularly.

Example 2: Insurance underwriting risk assessment
	► Problem: Organizations need to streamline underwriting processes by automatically summarizing
complex insurance documents.

Assess insurance risk
using third-party APIs

	► Model service: Google
Gemini API via Quarkus
REST Client

	► Additional considerations:
Fine tuning and data
preprocessing

	► Data: A complete collection of insurance documents,
including policies, claims, and medical reports

	► Model: Granite-7B-Starter fine-tuned for summarizing
insurance-specific text focused on risk factors, coverage,
and liabilities

	► Ethical considerations: Prioritizing accuracy, ensuring
legal compliance, and maintaining strict data privacy

	► Deployment and iteration: Integrate models into
the underwriting workflow, gather feedback, and refine
models to improve risk assessment.

https://quarkus.io/guides/rest-client

7

Introduction | Plan your strategy | Build AI-enabled apps | Adopt tools for AI | Get started

An understanding of prompt engineering, fine tuning, RAG, and agents is essential for developing
innovative AI-based applications. Each method provides distinct tools and strategies for addressing
complex challenges and improving the interactive features of AI-based applications. Successfully
applying these techniques helps you create more intelligent, responsive, and effective AI-based
systems that meet critical business goals.

Red Hat® OpenShift® AI builds on Red Hat OpenShift to provide a comprehensive platform for
building, training, fine tuning, deploying, and monitoring models and applications, while meeting the
workload and performance demands of modern AI solutions. It includes tools and environments that
boost AI development productivity:

	► Jupyter Notebooks and PyTorch ease experimentation and collaborative development,
streamlining the transition from prototype to production.

	► Red Hat OpenShift Pipelines automates continuous integration/continuous deployment
(CI/CD) workflows to ensure smooth and efficient model delivery.

	► Enhanced monitoring and observability tools track model performance and health in real time
and monitor for data drift and bias, supporting proactive adjustments and maintenance.

Red Hat OpenShift AI also streamlines development and deployment of AI-based applications across
hybrid cloud environments. Enhanced model serving capabilities—including support for model servers
and runtimes like KServe, vLLM, and Text Generation Inference Server (TGIS)—help you deploy AI
models simply and flexibly. Red Hat OpenShift AI extends model serving capabilities to edge locations,
so you can deliver AI-based solutions in resource-constrained environments. Self-service access to
hardware accelerators lets you rapidly iterate and optimize applications.

Red Hat Enterprise Linux® AI is a foundation model platform to seamlessly develop, test, and
run Granite family LLMs to power enterprise applications. It allows portability across hybrid cloud
environments, and makes it possible to then scale your AI workflows with Red Hat OpenShift AI.

Finally, the Podman Desktop AI Lab extension provides a streamlined setup for developing
and testing AI-based applications locally, so you can simulate production environments accurately
and efficiently.

Adopt advanced tools
and technologies for AI

https://www.redhat.com/en/technologies/cloud-computing/openshift/openshift-ai
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://jupyter.org/
https://pytorch.org/
https://www.redhat.com/en/technologies/cloud-computing/openshift/pipelines
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://docs.redhat.com/en/documentation/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-small-and-medium-sized-models_model-serving#configuring-monitoring-for-the-multi-model-serving-platform_model-serving
https://kserve.github.io/website/latest/
https://github.com/vllm-project/vllm
https://github.com/huggingface/text-generation-inference
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux/ai
https://www.redhat.com/en/topics/ai/open-source-llm
https://podman-desktop.io/extensions/ai-lab

8

Introduction | Plan your strategy | Build AI-enabled apps | Adopt tools for AI | Get started

Copyright © 2024 Red Hat, Inc. Red Hat, the Red Hat logo, and OpenShift are trademarks or registered trademarks of Red Hat, Inc. or its
subsidiaries in the United States and other countries. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
All other trademarks are the property of their respective owners.

1024_KVM

Start building AI-enabled applications
today with Red Hat OpenShift AI.
Red Hat OpenShift AI simplifies complex workflows, speeds development
cycles, and expands deployment options. By reducing the time and effort
required to build and deploy AI models, you can focus on innovation and
create compelling solutions in less time.

Ready, set, develop

Get started with Red Hat
OpenShift AI for free

Access Red Hat OpenShift AI
in the free Developer Sandbox.

Learn how to use
Red Hat OpenShift AI

Access interactive learning paths
for a variety of AI use cases.

https://developers.redhat.com/products/red-hat-openshift-ai/getting-started
https://developers.redhat.com/products/red-hat-openshift-ai/getting-started
https://developers.redhat.com/learn/openshift-ai
https://developers.redhat.com/learn/openshift-ai
https://developers.redhat.com/products/red-hat-openshift-ai/getting-started
https://developers.redhat.com/learn/openshift-ai

	RHODS try it button 3:
	RHODS try it button 4:

