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Introduction

As the state of information technology has advanced, the number of
vulnerabilities and regulatory concerns have exponentially increased.
Fortunately, the tools, methodologies, and core technologies available to
enhance our security posture have also increased. The current iteration of
the technology life cycle has positioned containers front and center; backed
by a myriad of underlying open source (and commercial) projects and
products.

The rapid adoption and blazingly fast upstream development of open source
projects can sometimes prevent necessary and newly introduced security
protections from being applied right out of the box. Red Hat OpenShift
Container Platform (OCP) addresses these and other concerns by
expanding upon Red Hat's open source heritage to tackle security concerns
as a forethought instead of as an afterthought.

This book describes how security is addressed at core layers of the
OpenShift 4 technology stack, and how compliance and regulatory concerns
can be mitigated. Whether investigating how to deploy a cluster, or fine-
tuning security for an existing cluster, it is important to first understand the
high level components that make up the OpenShift Container Platform.
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OpenShift Container Platform

Starting from the lowest layer, OpenShift can be deployed on a variety of
infrastructure which includes bare-metal servers, virtualized environments,
private, public, managed, and hybrid cloud environments. Red Hat Enterprise
Linux (RHEL) and RHEL CoreOS are the underlying operating systems upon
which OpenShift is run. Kubernetes provides the basic container
orchestration and cluster services providing advanced automation
management features.

Building on the Kubernetes engine, OpenShift adds platform services that
manage and deliver containers with the cluster. Application services let
users pull in databases and other services to use with their applications.
Developer services help developers create and manage the life cycle of
application containers.



OpenShift Kubernetes Engine

The Kubernetes container orchestration engine is at the core of OpenShift.
Additional cluster services are run on top of Kubernetes, including:

« Automated Operations : Operators provide the facilities needed to
enable automated operations within OpenShift. They are a critical
addition for the set-up and on-going maintenance of both critical
infrastructure and applications in OpenShift. Operators, such as the
Machine Config Operator (MCO), manage direct configuration and
updates to nodes, while the Cluster Version Operator (CVO) manages
multiple operators in the OpenShift infrastructure.

¢ Over-the-air-updates: Updates to both RHCOS nodes and the
OpenShift cluster itself are applied by over-the-air-updates. The
updates are packaged in containers and can be set up to apply
automatically from selected channels and releases.

« Monitoring: A preconfigured monitoring stack, based on the
Prometheus project, is included in OpenShift Container Platform 4
clusters. This uses Grafana analytics dashboards to visualize and analyze
metrics.

« Registry : Each OpenShift cluster comes packaged with a built-in
registry which can be used to push images from, and pull images to, the
OpenShift cluster. Red Hat also offers a separate Red Hat Quay registry
product, for more advanced and scalable registry solutions.

* Networking: Networking services include the ability to set network
policies and manage ingress and egress communications for the cluster.

* Router: OpenShift includes the HAProxy router, which can be optimized
and configured to scale as needed.


https://prometheus.io/
https://grafana.com/

+ KubeVirt: OpenShift container-native virtualization (currently in
Technology Preview), offers the means of running virtual machines
alongside containers on an OpenShift cluster. That feature is built on
Kubernetes KubeVirt technology.

* OLM: The Operator Lifecycle Manager (OLM) provides the framework
for OpenShift cluster users to find and use operators. With OLM, users
can install, upgrade and assign role-based access control to available
operators.

¢ Helm: Helm is a command-line tool that was created to simplify how
applications and services are deployed on a Kubernetes cluster. Support
for Helm 3 is in Technology Preview for OpenShift 4.3.

Ultimately, OpenShift enables three core capabilities to the enterprise, each
of which is supported by its own stack of related technologies. These are:

Platform Services

Containers encapsulate critical business workloads. The management of
these workloads must be fully automated with appropriate levels of
traceability. These needs are accomplished via the OpenShift platform
services technology stack, including Service Mesh (based on Istio),
Serverless, Cl/CD pipelines, full stack logging, and chargeback.

Application Services

Cloud-native applications allow the enterprise to deploy their workloads to
multiple cloud-based platforms with minimal refactoring. OpenShift
supports the development of these applications by supporting multiple
databases, programming languages / run times, enterprise integration,
business automation, and 100+ Independent software vendor (ISV) services.



Developer Services

Fast turnaround times are a requirement when it comes to creating and
maintaining enterprise applications. OpenShift developer services enhance
productivity by providing developer command line interfaces (CLI), visual
studio code (VS Code) extensions, integrated development environment
(IDE) plug-ins, and cloud-native IDEs in the forms of Code Ready
Workspaces. Code Ready Containers (CRC) also allow developers to spin-
up local OpenShift environments they can use for experimentation.

Audience

The audience for this book is not expected to have expert-level knowledge
of core OpenShift concepts. However, basic knowledge of Linux, Containers,
and Kubernetes from a user or administrative perspective will certainly be
useful, especially when reading through some of the technical
implementation described in the chapters.

This book was created to help those in cloud infrastructure and security
engineering roles address the many security challenges facing them. Cloud
security is complex, and Red Hat understands that users need more than
just guidance in technical system configurations. The authors have
identified approaches that aid in the triaging of security trade-offs and risk,
policy enforcement, reporting, and the validation of system configuration.

The cloud infrastructure and security engineering roles are central to
establishing and preserving security postures. It is the book’s intent to
support these roles by providing the proper mixture of conceptual,
organizational, and technical guidance, thereby increasing the security
vigilance and effectiveness of those with such responsibilities.

For the cloud security auditor, whether in an internal role or as a third-party
assessment organization, this book intends to provide the technical



guidance needed to verify, validate, and enforce security controls. For
technology professionals charged with security policy management, this
book should offer insight into related organizational policy, functional
testing, and data stewardship tasks while augmenting knowledge in these
areas.

While the book speaks to OpenShift from a holistic infrastructure
perspective, it does cover areas that application developers and reliability
engineers may find valuable. With the ever evolving trends in container-
based microservices, baking security into the continuous integration and
delivery pipelines is a fundamental requirement. Build and runtime security
features are discussed, and advantages of a secure container baseline
image are covered as well.

What's in the Book?

The content of this book is organized into the following chapters:

Chapter 1: Risk Management and Regulatory Readiness

The chapter on risk management and regulatory readiness provides an
overview of the business and legal drivers behind a successful security
posture. Approaching security from a continuous process perspective is not
only required, but extremely effective in establishing an approach that
ensures full coverage of threat vectors.

The content focuses heavily on the NIST model of managing risk but
exposes the international nature of compliance as well.
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Chapter 2: Red Hat Enterprise Linux CoreOS Security

Red Hat Enterprise Linux CoreOS (RHCOS) is the preferred operating
system to power each node of the OpenShift cluster. RHEL worker nodes
are also available. How RHCOS is configured has major implications on the
security of the containers and infrastructure components running on those
systems. Because RHCOS nodes are meant to run with minimal changes, it is
important that any security-related enhancements to those nodes be done
carefully.

This chapter on RHCOS provides a technical overview of RHCOS security
features. As the foundational layer of the OpenShift Container Platform,
RHCOS has been designed to efficiently work within the context of
controlled immutability, while seamlessly exposing strong security features
available for consumption higher in the stack. The RHCOS life cycle, and by
extension the control plane life cycle, is also covered in this chapter.

Chapter 3: Container Security

Every Linux container running on an OpenShift platform is protected by
powerful RHEL security features built into the nodes in OpenShift. These
features protect containers from one another and protect the underlying
operating systems from the containers. In OpenShift 4, containers are
ultimately managed on each node by the CRI-O container engine

This chapter describes how OpenShift container security comes
preconfigured out of the box. This includes how container namespaces
(such as process tables, network interfaces, and file systems) are separated
from the host, and how host access can be allowed or blocked in relation to
system calls and capabilities. Likewise, it explains how SELinux keeps
containers from accessing any resources from the OS or from other
containers that are not explicitly allowed by SELinux policy.
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Chapter 4 : Kubernetes Security

As the orchestration layer in an OpenShift cluster, Kubernetes security
implementation spans security considerations across OpenShift. At the
Kubernetes level, OpenShift security professionals need to be concerned
about managing the safety and updating of certificates. They also must be
concerned with access to underlying components, such as the APl server
and OpenShift master data in etcd.

Understanding the components that make up the Kubernetes orchestration
platform, and how the security of those components is protected and
managed, is the focus of this chapter. This chapter includes techniques
which can be incorporated to meet security needs, such as moving
components to separate infrastructure nodes or reconfiguring monitoring at
the Kubernetes level.

Chapter 5: Identity and Access Management

Every OpenShift cluster maintains user accounts at different levels of the
cluster. There are user accounts on each node, as well as system and regular
user accounts at the cluster level. Managing the access each user has to
features on the OpenShift cluster and being able to authenticate the
identity of each user, are critical to properly securing an OpenShift cluster.

This chapter describes the unique identities that are assigned at each level
of an OpenShift 4 cluster by default and the different types of users which
can be configured. It also describes how to use, and protect, the
kubeadmin account and kubeconfig credentials. As to authentication, the
chapter describes how OpenShift interfaces with the Kubernetes
Authentication Layer to establish OpenShift's authentication of its users
with different identity providers.
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Chapter 6 : Networking Security

OpenShift builds on Kubernetes networking by enhancing internal and
external networking security with operators, plug-ins, and many advanced
network security features. OpenShift plug-ins extend Kubernetes CNI
communications by simplifying connections to different underlying network
types. The OpenShift Cluster Network Operator manages basic networking
configuration and upgrades, while other OpenShift Operators help to secure
specific network-related features, such as DNS and ingress.

Use the Networking Security chapter to learn how OpenShift simplifies
network management. See how advanced networking features such as
Multus enable creation of multiple network interfaces to a pod to separate
sensitive and non-sensitive data. Understand how OpenShift Service Mesh
assists oversight of all the components of a microservice-based application
through the addition of sidecars to monitor communications.

Chapter 7: Auditing

A solid auditing framework does more than just log activities — it also raises
alerts when those activities pose a threat to infrastructure, applications, or
data. For many organizations, auditing is required to meet security policies.
In OpenShift 4, auditing is enabled by default and provides extraordinary
flexibility for configuring management and access to auditing data.

At its core, OpenShift 4 auditing was designed using a cloud-native
approach to provide both centralization and resiliency. This chapter
describes how OpenShift auditing works, as well as how to configure it for a
variety of Role-Based Access Control (RBAC) roles and security demands.



Chapter 8: Encryption, Secret Management, and Data
Protection

Data in transit and data at rest can be secured throughout the OpenShift
cluster. Kubernetes secrets provide the means of storing passwords, OAuth
tokens, ssh keys, and other sensitive security elements. Encryption protects
those secrets as well as the data, to both keep content safe and to be in line
with required regulatory and compliance frameworks.

In this chapter, learn how encryption is implemented and how certificates are
managed and used in OpenShift. For encryption between applications,
Transport Layer Security (TLS) provides the foundation for protecting data
in flight. Authentications rely on certificates, such as X.509, for both
validating and protecting internal and external communications. For many
organizations, understanding how cryptographic standards, such as Federal
Information Processing Standards (FIPS) apply to their compliance
requirements, is critical.

Chapter 9: Securing Cl/CD

Securing containerized applications begins well before their deployment to
OpenShift. This chapter outlines the choice of components of the
Continuous Integration and Continuous Delivery (Cl/CD) pipeline that feeds
into an OpenShift cluster. Those components need to be hardened and
should come from a trusted supply chain.



As a foundation for images, Red Hat Universal Base Images (UBI) (which are
continuously tested, health-checked, and able to be freely redistributed)
allow combination of the container images with real Red Hat Enterprise
Linux RPM packages. By using automation software, such as Jenkins,
container images can be built and tested before deploying. With image
scanning features such as OpenSCAP or Clair, vulnerabilities in containers
can be looked for and any issues discovered can be acted on before any
damage is done.






1. Risk Management and
Reqgulatory Readiness

As a global company, Red Hat is intimately involved, on multiple levels with
the security of enterprise systems. Red Hat's global experience has also
allowed the discernment of a consistent pattern in the areas of risk
management, threat modeling, and compliance (regulatory readiness).
Customers are typically required to adhere to an industry, national, or
internal corporate governance framework when it comes to information
systems security.

For example, both the United States and French governments have
identified critical infrastructure sectors with assets, systems, and networks
vital to the general, economic, public health, or safety of the country. In
these cases, sovereignty and industry designation dictate which risk
management frameworks the cloud environment will have to adhere to.
Awareness of this compliance pattern allows us to increase the security
posture of OpenShift and other products, so that the process of
deployment is made easier from a technical compliance perspective.

Coverage for Risk A Compliance Continuous Audit
Management Frameworks Assessment Process and Assessment
Achieving and Maintaining an Authorization to Operate

Figure 1.I: Global Compliance Model



In addition to the cloud platforms software we provide, this book should be
considered a supportive artifact that accelerates system documentation
efforts. These efforts on the part of cloud implementers are formed into
policy statements, procedural guidance, and actionable risk management
information. OpenShift implementers engaged in Information Security risk
management generally operate under or adapt an authoritative risk
management framework. Generally, risk management frameworks are
overseen by third-party organizations with a vested interest in the
consequences of the operations under management. For example :

« The Joint Authorization Board (JAB) of the Federal Risk and
Authorization Management Program (FedRAMP) evaluates third-party
assessment organization (3PAO) assessments of cloud providers

+ FedRAMP itself evaluates the 3PAOs and creates policy guidance so
that cloud operators can create and operate a compliant and verifiable
Information Security Program

+ In aslightly modified model, the National Cybersecurity Agency of
France (ANSSI) performs security assessments and provides
authorizations to Operators of Essential Services (OES). Cloud
platforms managed by these operators are known as
Essential Information Systems (EIS) and carry the designations as
supportive or responsible for the critical functioning of the French
economy or society

One of the goals of this book is to enable security practitioners to achieve
the critical milestone of receiving their own authority to operate (ATO) or
equivalent, regardless of the framework that applies.

Well-evolved and comprehensive organizational Information Security
Programs generally require adaptive work, related risk management, and



acceptance. The goal is to take a product such as OpenShift from its default
security posture, expand controls to meet security objectives, and allow the
product to deliver service. No cloud product automatically and completely
meets the demands of any Information Security Program since many of the
activities of the program are based on the organization’s own reporting and
vigilance capability.

At the very least, security practitioners and evaluators want to know what
control elements to engage vigilance toward. Even when given the many
advanced security features and workflow designed into OpenShift, there is
more work to do on site. Since security is a process and is always evolving,
Red Hat is continuously evaluating OpenShift's security posture against the
compliance frameworks. This is the value of the Red Hat subscription.

This chapter focuses on risk management and regulatory readiness as
applied to OpenShift at a high level. Most of the chapter will feel official and
factual in tone, however, it is important for the information security
professional to understand Red Hat's strategy around risk management
through the use of NIST's Risk Management Framework and other
regulatory legal and certification requirements.

Risk Management Frameworks

While this section highlights the NIST Risk Management Framework (RMF),
it is also possible to address general requirements found in other
frameworks such as Control Objectives for Information and Related
Technologies (COBIT) and the Information Systems Security Association
(ISSA). There tends to be a large overlap between other available risk
management frameworks, and as a result many follow what NIST has
established.
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NIST Risk Management Framework (NIST RMF)

The National Institute of Standards and Technology (NIST) Risk
Management Framework is designed to help manage organizational risk.
The security controls specified by the framework serve as a target to be
remediated by the security capabilities of OpenShift as a platform. The
NIST RMF provides a broad scope for assessing risk and subsequently
configuring infrastructure to meet the requirements specified in the
framework.

The NIST RMF provides an approach that continuously manages and
evaluates the security posture life cycle of the system. This risk-based
approach resolves the constraints presented by the global compliance
pattern introduced in the beginning of this chapter. The approach allows the
security practitioner to select and specify controls based on sovereign laws,
technical effectiveness, and business constraints.

The diagram in figure 1.2 shows the cyclical nature of security and risk
management activities within the NIST RMF.

20
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Figure 1.2: NIST Risk Management Framework Steps

NIST Foundational Guidance

FIPS 199/200 Elements

Through its FIPS 199 and 200 publications, NIST has established
foundational elements within risk management that speak to categorizing
security risks and establishing adequate security for each of those levels.
Together these publications establish a matrix that represents security
scope through a catalog of control families (see Table 1.1: NIST Control
Families) and impact levels.
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NIST Control Families

Access Control
(AC)

Security Assessment and
Authorization
(CA)

|dentification and
Authentication
(IA)

Media Protection

(MP)

Personnel Security (PS)

System and Communications
Protection
(SC)

Awareness and Training
(AT)

Configuration Management
(CM)

Incident Response

(IR)

Physical and Environmental
Protection
(PE)

Risk Assessment
(RA)

System and Information
Integrity
(Sh

Audit and Accountability
(AU)

Contingency Planning
(CP)

Maintenance
(MA)

Planning
(PL)

System and Services
Acquisition
(SA)

Table 1.1: NIST Control Families

As a vendor, Red Hat uses FIPS 199 to orientate default security settings
based on the defined impact levels:
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Potential impact

Se.curlfcy Low Moderate High

objective

Confidentiality

Preserving

authorized The unauthorized The unauthorized The unauthorized
restrictions on disclosure of disclosure of disclosure of information
information information could be  information could be  could be expected to
access and expected to have a expected to have a have a severe or
disclosure, limited adverse effect serious adverse effect catastrophic adverse
including means  on organizational on organizational effect on organizational
for protecting operations, operations, operations,

personal privacy  organizational assets,
and proprietary  or individuals.
information.

[44 US.C., SEC.
3542]

Integrity

Guarding against The unauthorized
Improper modification or
information destruction of

modification or  information could be
destruction, and  expected to have a
includes limited adverse effect
ensuring on organizational
information and  operations,
non-repudiation  organizational assets,
and authenticity. orindividuals.

[44 US.C., SEC.

3542]

The disruption of
Availability access to or use of

information or an
Ensuring timely  information system

and reliable could be expected to
access to and have a limited adverse
use of effect on

information. organizational
[44US.C,SEC. operations,

3542] organizational assets,

or individuals.

organizational assets,
or individuals.

The unauthorized
modification or
destruction of
information could be
expected to have a
serious adverse effect
on organizational
operations,
organizational assets,
or individuals.

The disruption of
access to or use of
information or an
information system
could be expected to
have a

serious adverse effect
on organizational
operations,
organizational assets,
or individuals.

organizational assets, or
individuals.

The unauthorized
modification or
destruction of
information could be
expected to have a
severe or

catastrophic adverse
effect on organizational
operations,
organizational assets, or
individuals.

The disruption of access
to or use of information
or an information system
could be expected to
have a severe or
catastrophic adverse
effect on organizational
operations,
organizational assets, or
individuals.

Table 1.2: NIST Impact Levels
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Readers charged with compliance-related responsibilities may find it helpful
to understand which security control groups and associated impact level are
required for their system.

Legal Requirements

For many organizations, meeting the required legal standards is an
organizational imperative. Whether utilizing validated ciphers, achieving
information assurance certifications, or complying with government
mandates, the following sections refer to some of the most internationally
recognized and mandated requirements that many organizations are
required to adhere to.

Federal Information Processing Standard 140 (FIPS 140)

As defined in the United States Public Law 104-106, any cryptography used
to protect sensitive or valuable data must undergo formal validation.

Developed by the National Institute of Standards and Technology (NIST), as
part of the Cryptological Module Validation Program (CMVP), FIPS 140 is a
United States Government standard that describes the cryptographic
algorithms which may be used and how they are to be validated and
certified.

Through various laws and regulations, the official position of the United
States Government is that unvalidated cryptography provides no protection
to information or data. In effect, the encrypted data using non-FIPS
validated cryptography would be considered the same as plain text.

Between 1987 and 2002, a special provision allowed for United States
Government agencies to waive the FIPS 140 validation requirements. Since
the Federal Information Systems Management Act (FISMA) of 2002, a

24



waiver can no longer be provided for cryptography that has not passed FIPS
validation.

When a cryptographic module undergoes FIPS validation, an independent,
third-party laboratory cryptographically verifies specific NIST-approved
ciphers and hashes used in the system. When the third-party lab has
completed its assessment, the results are reported to NIST for final
approval, and then NIST issues certificates to the vendor indicating that the
module has been validated. It is important to note that the validation is done
against compiled binaries on specific types of hardware. This means that
using the source code that contains the FIPS cryptographic ciphers and
hashes and re-compiling the source code not only invalidates the NIST
validation but any data encrypted with the recompiled edition is considered
plain text.

OpenShift's FIPS 140 Strategy

As an aggregation of many elements, products are typically not FIPS 140
validated although specific cryptographic modules within the product can
be FIPS validated. So, it is inaccurate to state that all of OpenShift, or even
all of Red Hat Enterprise Linux, is FIPS validated.

An example of an accurate statement would be that an "OpenSSH Server,
when deployed on Red Hat Enterprise Linux 7, is FIPS validated.” It would
not be accurate to make a broad, product-wide claim, such as "Red Hat
Enterprise Linux is FIPS validated.”

To meet the FIPS 140-2 cryptographic module requirements as established
through the Federal Information Security Management Act (FISMA),
OpenShift's guiding principle is to use the NIST-validated cryptographic
modules found in Red Hat Enterprise Linux when RHEL is booted in FIPS
mode. Please see sections below detailing the validation status of FIPS
modules.

25



Current Usage of FIPS 140 Cryptography

The following FIPS 140-validated modules are available for use when
OpenShift 4 is deployed on RHEL 7:

26



NIST

Module name certificate Functionality Sun.set./
expiration
number
Red Hat GnuTLS is a secure communications library
Enterprise implementing the TLS and DTLS protocols. It
Linux (v7) provides a programming interface to access the
GnuTLS = secure communications protocols as well as APIs l/24/2024
Cryptographic to parse and write X.509, PKCS #12, and other
Module required structures.
Red Hat
Enterprise Provides services operating inside the kernel with
Linux (v7) 3565 various ciphers, message digests, and an approved 11/14/2024
Kernel Crypto random number generator.
AP
Red Hat
Enterprise Provides IKE protocol key agreement services
Linux (v7) 3563 required for IPSec. l/14/2024
Libreswan
Eef HaF General purpose cryptographic library designed to
nterprise 3538 provide FIPS-validated cryptographic functionality 9/25/2024
Linux (v7) with the high level AP of the OpenSSL library
OpenSSL '
Red Hat The logical interfaces of this module consist of the
Enterprise PKCS #11 (cryptoki) API. This APl is often used in
Linux (v7) <2 authentication, such as for Multi-Factor Auth B R
NSS (MFA), PIV, and CaC.
Red Hat
Enterprise o
Linux (v7) 3067 Cllept side component for an SSH protocol 11/26/2022
version 2 protected communication channel.
OpenSSH
Client
Red Hat
Enterprise o
s o7 3063 Ser\{er side component for an SSH protocol 11/13/2022
version 2 protected communication channel.
OpenSSH
Server

Table 1.3: FIPS-validated Red Hat Modules
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http://localhost:9000/https%E2%80%89://csrc.nist.gov/Projects/cryptographic-module-validation-program/Certificate/3571
http://localhost:9000/https%E2%80%89://csrc.nist.gov/Projects/cryptographic-module-validation-program/Certificate/3565
http://localhost:9000/https%E2%80%89://csrc.nist.gov/Projects/cryptographic-module-validation-program/Certificate/3563
http://localhost:9000/https%E2%80%89://csrc.nist.gov/Projects/cryptographic-module-validation-program/Certificate/3538
http://localhost:9000/https%E2%80%89://csrc.nist.gov/Projects/cryptographic-module-validation-program/Certificate/3270
http://localhost:9000/https%E2%80%89://csrc.nist.gov/Projects/cryptographic-module-validation-program/Certificate/3067
http://localhost:9000/https%E2%80%89://csrc.nist.gov/Projects/cryptographic-module-validation-program/Certificate/3063

Planned / In Progress Usage of FIPS 140 Cryptography

Implementation Under Test List

Per NIST, the Implementation Under Test (IUT) list “is provided as a
marketing service for vendors who have a viable contract with an accredited
laboratory for the testing of a cryptographic module.” Or perhaps more
directly, inclusion on the NIST IUT list means that Red Hat has placed an
auditor on contract to begin formal evaluation, pending resource availability
of the auditor to begin the validation work. Currently, the following Red Hat
Enterprise Linux 8 (and thus Red Hat Enterprise Linux CoreOS) modules are
on the NIST Implementation Under Test list :

Module

Functionality IUT Date
name

Red Hat  GnuTLS is a secure communications library implementing the TLS
Enterprise and DTLS protocols. It provides a programming interface to access
. . 10/21/2019
Linux 8 the secure communications protocols as well as APIs to parse and
GnuTLS  write X.509, PKCS #12, and other required structures.

Eef Hat e logical interfaces of this module consist of the PKCS #11
|_-n er%nse (cryptoki) API. This APl is often used in authentication, such as for ~ 10/21/2019
e ®  Multi-Factor Auth (MFA), PIV, and CaC.

Table 1.4: Red Hat Module Implementation Under Test Status

NIST publishes a complete registry of all modules, from all vendors, that are
currently in the “Implementation Under Test” list. This is available at:

https://csrc.nist.gov/Projects/cryptographic-module-validation-
program/Modules-In-Process/IUT-List
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http://localhost:9000/https%E2%80%89://csrc.nist.gov/Projects/cryptographic-module-validation-program/Modules-In-Process/IUT-List

Modules in Process List

The Modules in Process (MIP) list contains cryptographic modules which are
actively being reviewed by NIST. This is the last stage prior to formal FIPS
validation. Currently, the following Red Hat Enterprise Linux 8 (and thus
RHCOS) cryptographic components are on the NIST Modules in Process
List:

Module name  Functionality

Ei?eﬂoartise GnuTLS is a secure communications library implementing the TLS and
Linux 8 Kernel DTLS prgtogols. It provides a programming interface to access the secure
Cryptographic communications prqtocols as well as APIs to parse and write X.509, PKCS
Module #12, and other required structures.

Ei’?erar?se Libgcrypt is a general purpose cryptographic library originally based on
Linux% code from GnuPG. This library provides symmetric and public key
libgerypt cryptography, hashing, key derivation, and several other functions.

Red Hat

Enterprise General purpose cryptographic library designed to provide FIPS validated
Linux 8 cryptographic functionality with the high level API of the OpenSSL library.
OpenSSL

Table 1.5: Red Hat Products under Active Review — Modules in Process

The NIST registry of Modules in Process can be found at:
https://csrc.nist.gov/Projects/cryptographic-module-validation-
program/Modules-In-Process/Modules-In-Process-List

Common Criteria

Common Criteria is a security-related certification for products that do
“information assurance” work which, these days, includes nearly everything!

Unique security function requirements are applied to broad technology
categories such as operating systems, routers, or virtualizations. Common
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Criteria (CC) is an international standard (ISO/IEC 15408) that defines and
specifies how to evaluate information systems and software. The Common
Criteria process ensures that the product or solution provider meets
established criteria through third-party review and evaluation. Topics of
evaluation include system design, architecture, life cycle management,
documentation guidance on secure deployment, and vulnerability
assessment.

The common in Common Criteria refers to an international consortium of
governments collaboratively creating mutually recognized standards.
Common Criteria ensures Red Hat OpenShift 4 can be deployed into
markets such as Australia, Canada, France, Germany, India, the United
States, and several dozen others.

Within the United States, the National Policy Governing the Acquisition of
Information Assurance (IA) and IA-Enabled Information Technology
Products states that in order to acquire Commercial Off-the-Shelf (COTS)
products (if there is an applicable protection profile) that product must have
a Common Criteria certification. Additionally, Common Criteria evaluation
and certification is needed for solutions to meet the full scope of NIST 800-
53 Moderate and High targets.

Starting with Red Hat Enterprise Linux 8.1, 8.2, and every Extended Life
Cycle (ELS) and Extended Update Support (EUS) release afterwards, RHEL
8 pursues Common Criteria certification. This means that versions of
OpenShift 4 will benefit from the underlying Common Criteria standing
provided by Red Hat Enterprise Linux 8 nodes.

Regulations and Policies

Those with compliance responsibilities within an organization have a full
scope of regulations and policies that may need to be followed. There are
many regulatory and policy requirements such as Section 508 that do have
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to be considered. However, an exhaustive treatment of such would be out of
scope for this book. Below is a list of the more security focused regulations
and frameworks and may serve at minimum as a guide to understanding or
researching what may be applicable for your industry, government or
organization.

NIST 800-53

The National Institute of Standards and Technology (NIST) created a
catalog of several hundred recommended security controls for governments
and organizations to create and assess security and compliance
requirements for their respective divisions and/or organizations. These
controls are defined in the NIST Special Publication 800-53 (NIST SP 800-
53). As previously mentioned in the NIST Foundational Guidance section, a
subset of the 800-53 controls have been selected for information systems
that are categorized as low, moderate, or high levels of heightened security.
It is from these impact baselines (low, moderate, high) that the various U.S.
Government agencies and organizations derive and map their respective
compliance frameworks (FedRAMP, FISMA, Common Criteria, etc.) and
profiles (low, moderate, high, etc.) for a product or an information system.
This means that for OpenShift to be utilized in the U.S. Government,
OpenShift and its components must meet the selected technical controls
laid out in the NIST baseline profiles. Red Hat cannot choose which parts of
the compliance framework to meet based on personal opinions. Red Hat
must follow the guidelines set forth by the compliance framework.

Red Hat undertakes internal assessments of products against all NIST 800-
53 controls, creates checklists, open sources the checklists, and submits
those checklists against the various government compliance frameworks
(FedRAMP, FedRAMP, FISMA, Common Criteria, etc.). Currently, only Red
Hat Enterprise Linux meets the majority of the U.S. Government compliance
framework requirements.
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To facilitate reciprocity amongst the different international security
standards bodies and frameworks, NIST has provided mappings and
references to other frameworks (COBITS, ISSA, and others) The Cloud
Security Alliance also publishes the Cloud Controls Matrix which provides
valuable insight related to control mapping.

The Australian Information Security Manual and the Essential
Eight

The Australian government, under the direction of the Australian Cyber
Security Centre (ACSC), publishes both the Information Security
Manual (ISM) and a document known as the Essential Eight (E8). The
Australian ISM represents another source of risk management guidance
while the E8 is a prioritized baseline of mitigation strategies. Both are
designed to be adopted for increased systems protection and defense
against bad actors.

Effectively, the E8 introduces maturity levels that help gauge alignment with
the overall strategies specified by the ACSC. In this regard the prioritization
of importance is similar to the NIST security objectives and impact levels.

IPv6

IPv6 requirements have made their way into government acquisition
language. Therefore, the United States Government has agreed on a
common interoperability test for IPv6 hosts, routers, and network protection
devices called USGv6. IPv6 implementations are tested by independent labs
to make sure they all work together.

For the latest status of IPv6, and any other US Government certification,
refer to the "Government Standards” article on the Red Hat Customer
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Portal : https://access.redhat.com/articles/2918071#usgv6-tested-product-
list-7

Configuration Baselines

Through participation in the United States’ National Cybersecurity Center of
Excellence (NCCoE), Red Hat collaborates with NIST via the National
Checklist Program. Defined by NIST 800-70, the NIST National Checklist
Program is the United States Government repository of publicly available
security checklists (or benchmarks) that provide detailed low-level guidance
on setting the security configuration of operating systems.

Red Hat configuration baselines submitted to the NIST National Checklist
contain the following:

« Security Content Automation Protocol (SCAP) Data Streams
Red Hat publishes human-readable configuration guidance as
eXtensible Configuration Checklist Description Format (XCCDF), and
machine-parsable pass/fail content in the Open Vulnerability
Assessment Language (OVAL). This data can be consumed by any NIST
SCAP Validated Product, such as OpenSCAP, Tenable, Qualys, SPAWAR
SCC, and many other tools.
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« NIST 800-53 Security Requirements Traceability Matrix
Often called an SRTM or SRM, this content maps specific configuration
actions (such as how to enable TLS) to specific NIST 800-53 controls.
These tables are often used to demonstrate recommended
configuration actions to satisfy a NIST 800-53 control and include
manual processes that third-party auditors can use to verify that a
control has been implemented.

« Ansible and/or MachineConfig Templates
To support automation-driven workflow, and ensure systems are
installed directly into a compliant state, automation content such as
Ansible Playbooks and/or MachineConfig templates are provided.

The full listing of Red Hat's NIST National Checklist program entries, which
include baselines such as the Australian Essential 8, the Defense Information
Systems Agency Security Technical Implementation Guides (DISA STIGs),
and the Health Insurance Portability and Accountability Act (HIPAA), can be
found at:

https://nvd.nist.gov/ncp/repository?authority=Red+Hat&startindex=0
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2. Red Hat Enterprise Linux
CoreOS Security

Red Hat Enterprise Linux CoreOS (RHCOS) is the operating system base
for OpenShift Container Platform (OCP). As a lightweight and purpose-
built operating system, it is based on Red Hat Enterprise Linux 8 and uses
the same kernel, code, open source development process, and ships with a
specific subset of RHEL software packages.

RHCOS is built and supported for use in OpenShift 4 clusters. Its primary
goal is to provide a secure operating system platform for running
Kubernetes, OpenShift services, and the containerized workloads running on
the aggregated platform.

This chapter breaks down RHCOS security features into several areas that
largely follow a cognitive journey from understanding toward action. First, it
covers how core components are designed to provide a secure and efficient
container platform. Next, it describes the entry points for adding security
features to nodes. After that, it steps through specific tasks for adding
available security features. And finally, it explains how to manage ongoing
security tasks with topics such as troubleshooting and upgrading nodes.

RHCOS Design

RHCOS represents the next generation of single-purpose container
operating system technology. Created by the same development teams that
created Red Hat Enterprise Linux Atomic Host and CoreOS Container Linux,
RHCOS combines the quality standards of Red Hat Enterprise Linux (RHEL)
with automated, remote upgrade features from Container Linux.
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RHCOS is supported only as a component of OpenShift Container Platform
4 for all OpenShift Container Platform machines. It is the only supported
operating system for the OpenShift Container Platform control plane or
master machines. While RHCOS is the default operating system for all
cluster machines, some of the cluster is composed of compute nodes, which
are also known as worker nodes. These may require certain flexibility in
design to enable certain workload types. To accommodate such scenarios,
worker nodes can be created that use RHEL as their operating system,
instead of RHCOS.

There are two general ways RHCOS is deployed in OpenShift Container
Platform 4 :

« If the cluster is installed on infrastructure that the cluster provisions,
RHCOS images are downloaded to the target platform during
installation, and suitable Ignition config files, which control the
RHCOS configuration, are used to deploy the machines. This approach
represents the installer-provisioned installation model.

« |f the cluster is installed on a local infrastructure, follow the installation
documentation to obtain the RHCOS images, generate Ignition config
files, and use the Ignition config files to provision the machines. This
model is the approach associated with user-provisioned infrastructure.
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Key RHCOS Features
The following list describes key features of the RHCOS operating system::

» Basedon RHEL
The underlying operating system consists primarily of RHEL
components. The same quality, security, and control measures that
support RHEL also support RHCOS. For example, RHCOS software is in
RPM packages, and each RHCOS system starts up with a RHEL kernel
and a set of services that are managed by the systemd init system.

« Controlled immutability
Although it contains RHEL components, RHCOS is designed to be
managed more tightly and indirectly than a default RHEL installation.
Management is performed remotely from the OpenShift Container
Platform cluster. On set up, RHCOS machines have only a few system
settings which can be modified. This controlled immutability allows an
OpenShift Container Platform to store the latest state of
RHCOS systems in the cluster, so it is always able to create additional
machines and perform updates based on the latest
RHCOS configurations.

39



CRI-O container runtime

RHCOS contains features for running the OCI- and libcontainer-
formatted containers that Docker requires. It does this by incorporating
the CRI-O container engine instead of the Docker container engine.
CRI-O focuses on features needed by Kubernetes platforms. In this
approach, CRI-O can offer specific compatibility with different
Kubernetes versions. CRI-O also offers a smaller footprint and reduced
attack surface than is possible with container engines that offer a
superset beyond Kubernetes-centric features. Since the OpenShift
Container Platform is really Kubernetes, it benefits from these features
as well. At the moment, CRI-O is only available as a container engine
within OpenShift Container Platform clusters.

Set of command line container tools

For tasks such as building, copying, and otherwise managing containers,
RHCOS replaces Docker with a compatible set of container tools. The
podman command supports many container runtime features, such as
running, starting, stopping, listing, and removing containers and
container images. The skopeo command can copy, authenticate, and
sign images. The crictl command can be used to work with containers
and pods from the CRI-O container engine. While direct use of these
tools in RHCOS is discouraged, they can be used for debugging
purposes.
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* rpm-ostree upgrades
RHCOS features transactional upgrades using the rpm-ostree system.
Updates are delivered by means of container images and are part of the
OpenShift Container Platform update process. When deployed, the
container image is pulled, extracted, and written to disk, then the
bootloader is modified to boot into the new version. The machine will
reboot into the update in a rolling manner to ensure cluster capacity is
minimally impacted.

« Updated through Machine Config Operator
In OpenShift Container Platform, the Machine Config Operator handles
operating system upgrades. Instead of upgrading individual packages,
as is done with Yum upgrades, the rpm-ostree command delivers
upgrades of the OS as an atomic unit. The new OS deployment is
staged during upgrades and goes into effect on the next reboot. If
something goes wrong with the upgrade, a single rollback and reboot
returns the system to the previous state. RHCOS upgrades in OpenShift
Container Platform are performed during cluster updates.

Everything in a Container

For RHCOS systems the layout of the rpm-ostree file system has the
following characteristics :

» /usris where the operating system binaries and libraries are stored and
is read-only. Red Hat does not support altering this.

* /etc, /boot, /var are writable on the system but only intended to be
altered by the Machine Config Operator
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Files written to these paths are persisted.

/usr/local is a symlink to /var/usr/local. Software may be
placed in /usr/local/{bin,sbin}. Depending on the path
settings, RHCOS may not use these paths. As such, it is not
recommended that administrators rely on these paths.

Some content in /boot, is managed by rpm-ostree for Kernel
and boot loader settings

The bootloader configuration is managed by rpm-ostree. The
Machine Config Operator can set kernel parameters for
machine pools

Various pathsin / are symlinks to /var:
e /root -> /var/roothome
e Jopt ->/var/opt

e /srv ->/var/srv

« /var/lib/containers is the graph storage location for storing container

images

RHCOS is not intended to be run outside of an OpenShift Cluster.

Conceptually, RHCOS is the base layer of OpenShift Container Platform 4.
As a member of the cluster, RHCOS is managed by and upgraded through

the cluster. In order to run software, admins for RHCOS should use
containers. Due to the unique filesystem layout, managed, and atomic
updates, RHCOS is incompatible at the host level with most non-

containerized applications.

An immutable operating system is one where the state does not persist

between reboots. RHCOS is not an immutable operating system because
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state may persist. The rpm-ostree command may be used to override and
change the underlying ostree image. RHCOS does have elements of
immutability that are controlled by the OpenShift Cluster. This controlled
immutability refers to the machine operating system content that is
delivered from Red Hat which includes the kernel, initramfs, packages, and
the default configuration. The Machine Config Operator ensures that each
node maintains the required configuration from the cluster view.

Machine Config Operator

OpenShift 4 is an operator-driven platform. This approach allows specific
operators such as the Machine Config Operator (MCO) to take a declarative
approach to cluster component life cycle management. This effectively
allows the automated management of cluster updates that range from the
kernel to services higher in the stack. The MCO is the component that joins
RHCOS and the OpenShift Cluster together.

MachineConfig resources provide the interface to thread OS configuration
through the cluster from bootstrap to cluster upgrades.

Some specific configuration options are abstracted into higher-level knobs
within MachineConfigs such as kernelType to enable the real-time kernel or
kernelArguments. Configuration for the container runtime and the kubelet
can be handled with their respective precursor objects,
ContainerRuntimeConfigs and KubeletConfigs, which are translated into
MachineConfigs by dedicated controllers.

Notably, MachineConfigs contain a section for defining files, units, and

certain user configurations which follow the CoreOS Ignition configuration
format. Indeed, MachineConfigs provide the basis for the Ignition payload
delivered to nodes on first boot. Additional files and configurations can be
added or modified on existing nodes through MachineConfig objects. This
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symmetry between first-boot and subsequent updates makes
RHCOS configuration consistent across a pool of nodes.

Ignition
The first boot agent driving RHCOS is Ignition. From Ignition’s Github page:

Ignition is the utility used by CoreOS Container Linux, Fedora CoreOS, and
RHEL CoreOS to manipulate disks during the initramfs. This includes
partitioning disks, formatting partitions, writing files (i.e. regular files,
systemd units), and configuring users. On first boot, Ignition reads its
configuration from a source of truth (remote URL, network metadata
service, hypervisor bridge, etc.) and applies the configuration.

During installation, the installer dynamically creates Ignition profiles to setup
and install RHCOS and OpenShift. While Ignition configuration files can be
used to change the behavior of the bootstrap, it should only be done when
necessary, such as to enable hardware or set targeted settings.

A Word on Agents

Many information security programs choose and require local agents to
implement certain functions of the program. There are a wide variety of
agent types available from commercial and community providers that add
security controls to Linux-based systems. Additionally, many cloud providers
also have agents that perform a pantheon of actions. Functions such as
configuration management, state management, audit, authentication,
logical access control, and monitoring are normally presumed to be available
for a Linux system.

It is important to understand that the scope of agent use here is for RHCOS
as the platform operating system. Security services deployed higher in the
stack that target Kubernetes and workloads are not addressed here.
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RHCOS promotes an expectation of certain consistencies intended to add
rigor to certain aspects of operations and security. The use of third-party
agents within RHCOS is considered to be an anti-pattern within the
RHCOS security architecture. This generally prompts an information
security program policy decision to use an appliance-like strategy as a
starting perspective to manage RHCOS. Furthermore, many agents expect
a traditional file system layout and may fail to work on RHCOS; this is true
even of agents that work on RHEL 8. Notably, the kernel module location
under RHCOS is read only. When an agent installation is necessary, it should
be containerized.

Modifying RHCOS Security Settings

Because Red Hat OpenShift 4 was designed to be simple to install and
secure out of the box, a major goal was to lock down workers and control
plane nodes. Nodes that veered from default settings are at risk of creating
security vulnerabilities and becoming difficult to upgrade. As a result,
OpenShift 4:
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 Discourages direct RHCOS modification
The classic practice by Linux administrators to log in to a node and add
software packages or change configuration files, does not scale well in a
cloud-first, container-first workflow under ongoing engineering by
DevOps practitioners. Direct low-level manipulation of disposable
workers also puts systems at risk of having changes overwritten by
upgrades or operators.

« Encourages enhancements to nodes in pools
As much as possible, all worker and control plane nodes need to be
configured the same. OpenShift offers ways of applying changes to all
similar nodes at once using operators. Adding changes in this way is also
more scalable, since changes made in this way will be applied to new
nodes as well.

That said, there are times when security requirements demand that
modifications be made to the RHCOS systems in OpenShift 4 clusters. As a
rule, any security modifications should be kept to a minimum and
implemented at the cluster level, whenever possible. With that rule in mind,
there are several entry points where modifications to OpenShift 4 worker
and control plane nodes might be considered.

Security Modifications at Installation Time

During installation, RHCOS provides opportunities to add security settings
that need to be in place before the cluster starts or immediately after the
first boot. Some of these settings are currently only supported with bare
metal OpenShift 4 installs while others can be done during installations
where a cloud provider or other environment provides the infrastructure.
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Bare Metal Installation

Bare metal installation is considered more laborious than cloud-based
installations. With cloud-based installations, the OpenShift Installer can
drive installation using APIs to provision infrastructure and the installation
environment for RHCOS is consistent for each installation; these features
are often lacking in bare metal installations.

Installer-Provisioned Infrastructure Installation

For installer-provisioned installations in OpenShift 4, there is an opportunity
to interrupt the openshift-install procedure to add a manifest file. Although
this should be done thoughtfully, any configuration file can be modified and
applied to all worker nodes or control plane nodes using a feature called
Ignition. The Ignition configs are put in place for when each system first
boots. The same Ignition configs can also be used after the cluster comes
up to modify nodes through MachineConfigs, using the Machine Config
Operator (MCO).

Examples of the kinds of security-related modifications which may be
enabled during installer-provisioned infrastructure installations include FIPS
mode, cloud disk encryption (encrypted EBS), and cloud encryption services
provided through cloud providers (e.g. AWS, GCP, Azure). There are
components that can be modified for final installation such as RHCOS
configuration files via Ignition configs, the implementation risk of these
components can vary. It is recommended to evaluate the risks based on
each organizations’ best practices or requirements.

Security Modifications Post-installation

Once the OpenShift 4 cluster is up and running, making changes directly to
RHCOS systems in the cluster can be done easily using the Machine Config
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Operator (MCO). Unlike configuration done on bare metal installs, features
added through the MCO are saved by the cluster. MCO features are applied
immediately to existing nodes, and to any nodes added in the future.
Likewise, there are other operators that can be used to manage specific
security features with similar expectations of application.

Machine Config Operator

Using the Machine Config Operator ensures that SSH keys, configuration
files, systemd unit files, kernel arguments, audit enablement, and other
features can be added. These changes can be chosen to apply to worker
pools and control plane nodes. The format of the MachineConfigs are the
same format used during installation.

Adding Security Services

If the hosting data center or cloud provider requires agents or other services
to be running on each node, the following items can be created:
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+ Kubernetes DaemonSet: DaemonSets are designed to run a pod on all
nodes in the cluster, although they can be limited to selected nodes
based on a specific nodeSelector. DaemonSets are particularly useful
for such events as logging, virus scans, file integrity checking, and
cluster storage on each node. Before using a Kubernetes DaemonSet,
please see Chapter 3: Container Security. Proposed DaemonSet usage
should be examined for security impact, placed under risk management,
and logical controls should be selected to use minimal security
permissions.

« OpenShift Operator: Operators allow a practitioner to phrase a security
solution as a deployable, maintainable service that leverages the system
availability of OpenShift. Security function version checks and upgrades
are managed in the same way as other OpenShift services.

In general, the two approaches can be used if it is acceptable to start the
service after the CRI-O container engine starts up. A common pattern in
Kubernetes practice is to run security-based daemonsets, or custom
OpenShift Operators, as privileged (i.e. as root) pods. It is recommended
that after containerizing the services, that:

+ The podis set to run where needed
« Consider endpoints, ports, and the level access

* Ensure that host mounts are kept to a minimum
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« Use service accounts for permission binding. For example, if the service
needs access to a specific device on the node, the service should be run
with that permission set.

¢ Think at scale. The RHCOS node is a member of the cluster. A focus on
individual nodes can lead to unsustainable practices that make
maintenance, upgrade, and audit more difficult.

Tasks for Accomplishing Security Goals

The goal of RHCOS is to be part of the OpenShift Container Platform. In
contrast, most other Operating Systems form the foundations on which a
universe of services could be built upon. As a result, RHCOS makes some
very opinionated choices regarding human-interface interactions : Human
intervention should not be required for the day-to-day operation of RHCOS.

Only exceptional circumstances, such as disaster recovery, should require a
human to engage with RHCOS itself. RHCOS design supports creation of
services that allow practitioners to minimize this interaction and better
characterize the organizational service management strategy. Thus, the
services run under the aegis of OpenShift and its immediacy of control and
vigilance. As such, the number of entry points into the cluster during
intervention events can be minimized.

Some OpenShift security enhancements must be done before the
OpenShift cluster first boots such as during an OpenShift install, while
building the cluster, or during a bare metal OS install. Other tasks can be
done after the cluster is up and running. The following sections describe the
two different types of tasks.
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RHCOS Security During Cluster Installation

The RHCOS design approach attempts to minimize feature decision
requirements during boot and early user space. Only two features — FIPS
mode and Full Disk Encryption (FDE) — are considered pre-first boot of the
cluster operations. After the cluster has been bootstrapped, the cluster can
further drive all other node level changes.

FIPS Mode

In order to ensure compliance, FIPS mode must be enabled before cluster
nodes first boot and should not be disabled once enabled. Moreover, once a
cluster has been installed, FIPS mode must remain on for the life of the
cluster, and for any newly introduced nodes, lest a weak key is generated and
used. FIPS cannot be enabled after installation or turned off and back on as
it will cause problems across the nodes and cluster. This can present itself as
odd errors among systems in a cluster performing cryptographic
transactions between each other.

Systems built in a non-FIPS state are unsafe for use if FIPS mode is enabled
after installation. Such systems should be prevented from entering or
otherwise discarded from the cluster.

During the first boot of RHCOS, the system performs a number of
cryptographic operations. Per the FIPS standard, any cryptographic material
must be only created and used with FIPS-validated modules. If a non-FIPS
system is bootstrapped and then FIPS is enabled, any previously generated
cryptographic material must be re-generated which would disrupt the
functioning of the cluster.

These requirements also apply to bootstrap nodes.
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These practices ensure that the cluster meets the objectives of an
organizational FIPS-compliance audit. Only CMVP FIPS-validated
cryptographic modules are enabled before the initial system boot.

OpenShift does not support changing the FIPS mode setting after
installation.

From the perspective of RHCOS, FIPS mode is enabled through an
embedded Machine Config Object. During node (worker or master)
installation:

« A module in the initramfs fetches the embedded Ignition specification
« The embedded MCO specification is checked for fips: true
 |f false, the machine continues to boot

« If true, the machine’s fips=1 bootloader argument is added, and the
machine immediately reboots

» Upon reboot,
I update-crypto-policies --set FIPS --no-reload

isrunin the initramfs

It is important to note that FIPS mode is enabled before any cryptographic
material is persisted. If necessary, security practitioners should create audit
automation validation to ensure the desired end state and cryptographic
material usage requirements are met.

Setting FIPS Mode

To generate an install-config.yaml file, run:
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§ ./openshift-install create install-config --dir=install

Then edit install-config.yaml andset fips: true

Full-disk Encryption

Starting with OpenShift 4.3, RHCOS supports full-disk encryption for the
system disk. As implemented, RHCOS disk encryption is FIPS compliant if
FIPS mode is enabled. RHCOS disk encryption will use the AES256-CBC
block cipher. This cipher is named in various places on the system and in
config files as cbc(aes), aescbc, aes cbc and similar.

By default, RHCOS boots with no encryption enabled. Currently, the only
two ways that disk encryption is supported is either with TPM2 and a Tang
server.

Disk Layout

LUKS (Linux Unified Key Setup) is the Linux standard for implementing disk
encryption. With OpenShift 4.3, the on-disk layout for RHCOS was changed
to store the root filesystem in a LUKS container. For example :

# lsblk —--output name,type,label,FSTYPE,UUID

NAME TYPE LABEL FSTYPE UuIb

sda disk

|—sda1 part boot ext4 1££4569d-80fa-4£36-9f63-
43775847cle9

|-sda2  part EFI-SYSTEM  vfat 1B80-D8C2

|—sda3 part

“-sda4 part crypt_rootfs crypto_LUKS 00000000-0000-4000-a000-
000000000002
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On initial boot, RHCOS will look for a LUKS filesystem with the UUID of
00000000-0000-4000-a000-000000000002 as a candidate for applying
encryption.

Note : This disk layout is expected to change in a future RHCOS release.
Please check the current OpenShift documentation.

No Encryption

If the user has not opted into full-disk encryption, the LUKS container is
ignored. In this case, a device-mapper linear target is set up that by-passes
the LUKS header. The device mapper name coreos-luks-root-

nocrypt indicates that encryption has been turned off.

$ sudo dmsetup table
coreos-luks-root-nocrypt: 0 32471007 linear 252:4 32768

If the root-file system is mounted with the device name coreos-luks-root-
nocrypt, the file-system is NOT encrypted.

Encryption

cryptsetup

Passphrases should meet organizational quality standards for password
creation. LUKS libcryptsetup is linked to libpwquality in all Red Hat-based
distributions. This means organizational standards and controls for
libpwquality usage (i.e. user password quality checks in RHEL) will likely
already exist in mature Linux-centric Information Security Programs, and
those controls would apply here as well.

OpenShift does not support any attended boot. As such, when disk
encryption is used RHCOS will discern the passphrase from either a TPM2
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or a Tang Server using Clevis.
During the initial install boot, the system::
« Determines if FIPS mode is needed (updates if enabled)

« Checks for a Clevis Pin. If no Pin is found, then the encryption setup will
be skipped

+ Generates ephemeral and random passphrases
» Applies encryption
+ Binds the LUKS Header to a Clevis Pin

« Continues to boot normally

During a regular boot, RHCOS::
« Looks for the LUKS partition with a label of crypt_rootfs
» Checks the LUKS header for a LUKS token with clevis
+ Calls Clevis to unlock the disk
A failure during the encryption, Clevis binding, or opening of an encrypted

file system is detected, RHCOS will drop to a rescue console. The only
recourse for failure to apply encryption is to re-provision a node.

Since encryption setup skips on a failed Clevis pin and boot continues,
security practitioners should create validation to ensure the desired state
exists afterward.

Currently, RHCOS does not support updating the Clevis configuration or re-
binding to a different key store.
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For encrypted nodes, the bound passphrase can be read by oc debug.

Clevis

Clevis is an open source project and a component of Red Hat Enterprise
Linux 8 that enabled Network Bound Disk Encryption (NBDE). Clevis
implements a distributed encryption mechanism using a McCallum-Relyea
Exchange. The process is designed so that neither the client nor the server
store knowledge of the key itself.

Simply put, a McCallum-Relyea Exchange means that the server is the only
one that can rediscover the key material, and the client is able to recalculate
what the server rediscovered without a direct key transmission or the client’s
own key retention. The client is anonymous to the server, and the server
stores no data. With Clevis, a pin is used to query a back end for completing
the McCallum-Relyea Exchange. RHCOS supports two pins, TPM2 and
Tang. During the initial boot, RHCOS looks for the presence of a file
delivered via the Machine Config Operator called /etc/clevis.json. For
example:

S cat << EOF > ./99_openshift-worker-tpmv2-encryption.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
name: clevis-config
labels:
machineconfiguration.openshift.io/role: worker
spec:
config:
ignition:

version: 2.2.0

storage:
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files:
- contents:
source: data:text/plain;base64,e30K
filesystem: root
mode: 420

path: /etc/clevis.json

EOF

A similar MachineConfig can be created with the master role to target
master nodes.

Machine Config Pools can optionally be used to bind encryption to a subset
of worker nodes. See : https://github.com/openshift/machine-config-
operator/blob/master/docs/custom-pools.md for information on creating
custom pools.

Mixed modes are also possible. For example, both TPM2 and Tang servers
can be on the master nodes.

TPM2

Due to simplicity, binding disk encryption to a TPM2 device is the preferred
encryption schema. In the example above, the Clevis binding is to a TPM2
device. data:text/plain;base64,e30K is decoded as {} (empty curly
brackets).

Tang

In order to provide network-bound disk encryption, RHCOS supports Tang.
In this security mechanism, the disk will be encrypted, and the boot will fail
unless the RHCOS can connect to the remote Tang Server.
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Tang is a server for binding data to network presence. It makes a system
containing data available when the system is bound to a certain secure
network. Tang is stateless and does not require TLS or authentication.
Unlike escrow-based solutions where the server stores all encryption keys
and has knowledge of every key ever used, Tang never interacts with any
client secrets, so it never gains any identifying information from the client.

The Clevis pin for Tang uses one of the public keys to generate a unique,
cryptographically-strong encryption key. Once the data is encrypted using
this key, the key is discarded. The Clevis client should store the state
produced by this provisioning operation in a convenient location. This
process of encrypting data is the provisioning step. See:
https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/8/html/security_hardening/configuring-
automated-unlocking-of-encrypted-volumes-using-policy-based-
decryption_security-hardening

To bind RHCOS to Tang, the IP or DNS name of the server and a thumbprint
of the server are needed. Thumbprint can be used in two ways:

S echo secret | clevis-encrypt-tang '{"url": "http://<HOST>"}'
The advertisement contains the following signing keys:
MXDt77HSEXcuFL1CReL2VsQPHKg

Do you wish to trust these keys? [ynYN]

In the case above, MXDt77HSEXcuFL1CReL2VsQPHKg is the thumbprint to be
used. Conversely, tang-show-keys can be used on the Tang server.

With the Tang Thumbprint in hand, it needs to be base64 encoded in a
JSON document. For example :

$ cat << EOF > ./99_openshift-tang-encryption.yaml

apiVersion: machineconfiguration.openshift.io/v1l
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kind: MachineConfig
metadata:
name: clevis-config
labels:
matchExpressions:
- {key: machineconfiquration.openshift.io/role, operator:
In, values: [worker,worker]}
spec:
kernelArguments:
- rd.neednet=1
- ip=dhcp
confiqg:
ignition:
version: 2.2.0
storage:
files:
- contents:
source: data:text/plain;baseé64,S(base64 -w ‘{"url":
"http://tang.example.org", "thp": "<THUMBPRINT>"')
filesystem: root
mode: 420

path: /etc/clevis.json

EOF
Note that the specific MachineConfig for Tang must::

¢ Include two kernel arguments for rd.neednet=1 and ip=dchp

* A base64 encoded JSON document

Since Clevis uses the Tang binding in the initramfs, DHCP is required since
there are no supported methods to persist non-DHCP IP addresses as
kernel command line arguments.
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Performance

Encryption is impacted by situations where the disk latency is noticeable to
the encryption service. Red Hat Engineering has determined that
attempting full-disk encryption on network-backed disks, such as Amazon
EBS and Azure root disks, etcd would fail to provision in the specified
timeout.

Before enabling full-disk encryption, security practitioners should
empirically verify availability of sufficient CPU, low disk latency, and high
networking bandwidth.

RHCOS Network Configuration Security

RHCOS itself does not require networking. However, when deployed in the
context of OpenShift Container Platform, networking is required. By default,
RHCOS is configured to use DHCP to obtain both networking information
and network identity. Either RHCOS or the network address provisioning
scheme will need to be altered to accommodate a requirement for static
addressing.

Network Configuration Behavior

If RHCOS is running in a cloud-based environment, then RHCOS is designed
to work with the cloud to obtain both identity and networking information.
Otherwise, DHCP should provide a hostname.

Hostname

In the case of self-hosted installations, DHCP should provide the hostname.
If the hostname is not provided via DHCP, network identity is inferred.
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If the hostname is NOT set, then it will discern its hostname in the following
order:

e /Jetc/hostname

DHCP lease

« systemd-hostnamectl’s transient hostname, if set

+ using a reverse PTR lookup
Under the following circumstances, it is recommended to set the hostname
via Ignition :

« multiple interfaces served via DHCP that provide a hostname

« statically-configured network interfaces

Please see Red Hat Enterprise Linux CoreOS Architecture for related
documentation.

Non-DHCP Network Configuration

For any environment without DHCP, Kernel Arguments (Kargs) and Ignition
must be used to set a persistent hostname.

Linux supports invoking network settings via the Grub prompt. This
experience is less than ideal, and Red Hat is actively working on an improved
solution. Please check the current documentation on when setting network
information via the kernel command line.
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RHCOS Security After the Cluster is Up

As much as possible, post-deployment changes to RHCOS nodes should be
done at the cluster level. Direct changes to RHCOS nodes should not be
accomplished by logging in to a node and adding software packages or
editing configuration files. Once an OpenShift cluster is up and running,
most direct changes to RHCOS nodes should be done by applying
MachineConfig objects to worker or master nodes.

Post-deployment security-related activities for RHCOS include adding
kernel modules that are applied when the RHCOS nodes boot and
modifications to security-related configuration files. To illustrate modifying a
configuration file, the procedure below changes the location of the time
server used to sync the chronyd service on each node. Both kernel
arguments and RHCOS configuration file changes can be applied to the
nodes through MachineConfigs.

Add a Kernel Argument to RHCOS Nodes

Some security features need to be done by passing arguments to the kernel
when an RHCOS node boots. There are kernel arguments that enable
tradeoffs between security and system availability.

One example of a kernel-related argument that can have an impact on
RHCOS security is pti. Turning on the kernel page-table isolation kernel
argument (pti=on) hardens the kernel to prevent bypassing kernel address
space layout randomization (KASLR), while mitigating the Meltdown
security vulnerability.

Kernel arguments can also be used to disable physical ports, such as
Universal Serial Bus (USB) and Firewire (IEEE 1394). Input/output (I/O)
devices include, for example, Compact Disk (CD) and Digital Video Disk
(DVD) drives. Physically disabling or removing such connection ports and
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|/O devices help prevent exfiltration of information from information
systems and the introduction of malicious code into systems from those
ports/devices.

The following procedure enables kernel page-table isolation symmetric
multi-threading on all worker nodes in a cluster. Substituting master for
worker would apply that change to master nodes instead. Once done, the
kernel argument is appended to the end of the existing kernel arguments.
Run the following procedure on an OpenShift 4.3 or later cluster as a user
with admin privileges.

1 To see the current MachineConfigs, type:

$ oc get MachineConfig

NAME GENERATEDBYCONTROLLER

IGNITIONVERSION CREATED

O0-master 25bb6aeb58135c38a66... 2.2.0
6h57m

00-worker 25bb6aeb58135c38a66... 2.2.0
6h57m

Ol-master-container-runtime 25bb6aeb58135c38a66... 2.2.0
6h57m

Ol-master—-kubelet 25bb6aeb58135¢c38a66... 2.2.0
6h57m

Ol1-worker-container-runtime 25bb6aeb58135c38a66... 2.2.0
6h57m

Ol1-worker-kubelet 25bb6aeb58135c38a66... 2.2.0
6h57m

99-master-b93e3bc8-a298-4d23... 25bb6aeb58135c38a66... 2.2.0
6h57m

99-master-ssh 25bb6aeb58135¢c38a66... 2.2.0
6h57m

99-worker-c2a65f30-b05c-46aa... 25bb6aeb58135c38a66... 2.2.0
6h57m

99-worker-ssh 25bb6aeb58135c38a66... 2.2.0
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6h57m

rendered-master-0e026742499d... 25bb6aeb58135¢c38a66... 2.2.0
6h57m

rendered-worker-38ca73bcfcca... 25bb6aeb58135¢c38a66... 2.2.0
6h57m

2 Add the kernel argument to a MachineConfig entry in a file and name
that file so that it is inserted in an appropriate place in the list of
MachineConfigs. For example, 20-worker-ption.yaml :

apiVersion: machineconfiguration.openshift.io/vl
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker

name: 20-worker-ption.yaml

spec:
config:
ignition:
version: 2.2.0
kernelArguments:

- pti=on

3 Useoc create to add the kernel argument to all worker nodes in the
cluster:

I $ oc create -f 20-worker-ption.yaml

4 To see the new machine config, type:

$ oc get MachineConfig
NAME GENERATEDBYCONTROLLER IGNITIONVERSION
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CREATED
00-master 25bb6aeb58135c38a66... 2.2.0
6h57m
00-worker 25bb6aeb58135c38a66... 2.2.0
6h57m
Ol-master-container-runtime 25bb6aeb58135c38a66... 2.2.0
6h57m
Ol-master-kubelet 25bb6aeb58135c38a66... 2.2.0
6h57m
Ol1-worker-container-runtime 25bb6aeb58135c38a66... 2.2.0
6h57m
Ol1-worker-kubelet 25bb6aeb58135c38a66... 2.2.0
6h57m
20-worker-ption.yaml 2.2.0
6s
99-master-b93e3bc8-a298-4d23... 25bb6aeb58135c38a66... 2.2.0
6h57m

5 Check that the worker nodes have rebooted and are available:

$ oc get nodes
ip-10-0-131-171.us-east-2.compute.internal

Ready worker 7h15m vl.16.2
ip-10-0-137-96.us-east-

2.compute.internal Ready master 7h24m vl.16.2
ip-10-0-151-140.us-east-2.compute.internal
Ready worker 7h1lé6m vl.16.2
ip-10-0-158-218.us-east-2.compute.internal
Ready master 7h24m vl.16.2
ip-10-0-163-217.us-east-2.compute.internal
Ready master 7h24m vl.16.2
ip-10-0-167-252.us-east-2.compute.internal
Ready worker 7h1l6m vl.16.2
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6 List the contents of the /proc/cmdline file on one of the worker nodes,
to make sure the kernel argument has been applied:

$ oc debug node/ip-10-0-131-171.us-east-2.compute.internal
Starting pod/ip-10-0-131-171lus-east-2computeinternal-debug
To use host binaries, run “chroot /host"

If you don't see a command prompt, try pressing enter.
sh-4.2# cat /host/proc/cmdline

BOOT_IMAGE=(hdO,gptl)/ostree/rhcos-
9a8c2fd60£f5219ec£823c685ed70097b8c55bb8b0d43e4192737ea791863091
8/vmlinuz-4.18.0-147.3.1.e18_1.x86_64 rhcos.root=crypt_rootfs
console=tty0 console=ttyS0,115200n8 rd.luks.options=discard
ostree=/ostree/boot.1l/rhcos/9a8c2fd60£f5219ecf823c685ed70097b8c5

5bb8b0d43e4192737ea7918630918/0 ignition.platform.id=aws pti=on

Change a Configuration File on RHCOS Nodes

The procedure for applying any configuration file to an RHCOS node is
basically the same, regardless of which file is applied. The following
procedure describes how to replace the chrony.conf file so that one could
change settings or assign a different time server in the chronyd service.
Apply the change using a MachineConfig, and it will be deployed to all
worker or master nodes.

1 To create the contents of the chrony.conf file and encode it as base64,
do the following:

$ cat << EOF | base64

server clock.example.com iburst
driftfile /var/lib/chrony/drift
makestep 1.0 3

rtcsync

logdir /var/log/chrony
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EOF
c2VydmVyIGNsb2NrLnJ1ZGhhdC5jb20gaWJ1lcnNOCmRyaWZ0ZmlsZSAvdmFyL2x
pYi9jaHJvbnkyv
ZHJpZnQKbWFrZXNOZXAgMS4wIDMKcnRjc31luYwpsb2dkaXIgL3Zhci9sb2cvY2h
yb255Cg==

2 Replacing the base64 string with the one created earlier, as shown in
the following example. In this example, the file is added to all worker
nodes:

S cat << EOF > ./50_workers-chrony-configuration.yaml

apiVersion: machineconfiguration.openshift.io/v1l
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: workers-chrony-configuration
spec:
config:
ignition:
config: {}
security:
tls: {}
timeouts: {}
version: 2.2.0
networkd: {}
passwd: {}
storage:
files:
- contents:

source: data:text/plain;charset=utf-
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AvdmFyL2xpYi9jaHJvbnkvZHJpZnQKbWFrZXNOZXAgMS4wIDMKcnRjc31luYwpsb
2dkaXIgL3Zhci9sb2cvY2hyb255Cg==
verification: {}

filesystem: root

mode: 420

path: /etc/chrony.conf

osImageURL: ""

EOF

3 Make a backup copy of the configuration file.

4 This file could either be used during OpenShift installation or via the
MCO after the cluster is running. If the cluster is not up yet, generate
manifest files, add this file to the openshift directory, and continue to
create the cluster. If the cluster is already running, apply the file as
follows:

I $ oc apply -f ./50_workers-chrony-configuration.yaml

As noted earlier, this procedure can be repeated for any file to add to every
worker or master node in a cluster.
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Ongoing RHCOS Security Issues

Once an OpenShift cluster is up and running, there are ongoing tasks which
can be done to ensure the underlying RHCOS systems remain secure. A few
elements of the underlying design of OpenShift 4 should help approach
these topics:

» Troubleshooting
Because OpenShift 4 is designed to be managed from the cluster itself,
directly logging in to a node, typically using ssh, is not recommended.
Instead there are both web-based (the OpenShift console) and
command-line (oc command) methods for troubleshooting the security
of RHCOS nodes.

« Upgrading
RHCOS technologies, such as rpm-ostree, provide a different upgrade
technique than typical RPM software package upgrades using yum and
dnf. Instead, RHCOS upgrades are done by delivering a new ostree layer
(via a container) to overlay the existing deployment.

Troubleshooting RHCOS Security

To troubleshoot RHCOS systems in an OpenShift cluster, the OpenShift
web console or the oc command may be used. This is supportive of a rapid
incident intervention strategy. Other means of accessing RHCOS nodes in a
cluster, which are discussed later, should be used primarily to troubleshoot
nodes that are inaccessible from the cluster.

Using the Web Console to Troubleshoot

After an OpenShift cluster is up and running, a URL to the cluster’s web
console and credentials for logging in are presented in the CLI output of the

69



installer.

Once logged in to the console, issues associated with each node can be
found in a variety of ways. In particular, the Compute sections in the left
navigation menu offer RHCOS node information, as illustrated in Figure 2.1:

Red Hat -
OpenShift Container Platform = (+] (2]

& Ready t >elect All Filte 6 Items
Name 1 Status Role Machine

@ p-10-0-133-33.05- @ Ready worker @ creous- o

[ IS 8-( @ Ready master @ cregus-ocpazb-dsom

@ ip-10-0-147179.us @ Ready worker @ cnegus-ocpa3b-dSohr

@ ip-10-0-149-15.u © Ready master @ cnea

@ ip-10-0-164- @ Ready worker @ crean

0‘ 10-0 ) @ Ready naster @ egus-ocpa3b-d5o!

Figure 2.1: Troubleshoot RHCOS Systems from the OpenShift Console Compute Area

From the Nodes selection, the names of the nodes assigned to the cluster
appear, while the Machines section helps identify the purposes of each node
(such as whether it is a worker or master node).

For security purposes, Machine Health Checks is available. Turning on health
checks creates reporting of the security state of each machine. Checking
the Machine Configs and Machine Config Pools reveals how the machines
are configured.
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Troubleshooting Nodes from the Command Line

The oc command is the primary tool for interacting with the nodes in an
OpenShift cluster. With oc, issues can be pursued by listing available nodes,
viewing logs, checking pod activity, and creating and deleting Kubernetes
components.

Use oc adm must-gather to gather a variety of logs and resources from the
cluster and drop them into a must-gather* directory on the local system. In
particular, host_service_logs files provide insights into critical host-specific
services, such as kubelet and crio:

$ oc adm must-gather

If security issues with a node are suspected, its workload can immediately be
moved, and it can be isolated from further use until an investigator decides
it is usable again or chooses to delete it. To isolate a node from accepting
new workloads and drain the node in preparation for shutdown, use:

$ oc adm cordon <yournode>

$ oc adm drain <yournode>

At this point, a new node could be spun up to replace the old one. If the
node issue is resolved, the current one may be made available again via oc

adm uncordon

Troubleshooting with Direct Shell Access to Nodes

Deeper debugging of a node might require direct access to that node from a
shell. Direct user access to OpenShift RHCOS nodes by a privileged user is
normally strongly discouraged. If something goes critically wrong with a
node, the recommended course of action is to bring up a new node and
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remove the broken one. Times when responders may want direct access to a
node, however, include :

* Recurring problem analysis
If developers experience recurring problems requiring node-specific
troubleshooting data, they may need privileged access via a shell, so
they can interactively run commands such as sosreport, strace, or
tcpdump to examine what is happening.

 Cluster inaccessibility
If the master nodes are inaccessible, oc commands will not be able to
access the cluster for troubleshooting, intervention, or repair. Logging in
directly to a node may be a viable alternative to deleting the cluster and
starting over.

* Incident response root cause analysis
The node is taken offline and analyzed to determine its causative role or
to correlate events in a network-oriented incident.

» Forensics
The node is taken offline, and a shell is required for forensic analysis.
Different access topology strategies that allow direct privileged access to

nodes include:

« Direct: The oc debug command opens a container on a node with root
privileges via a shell

* Via Bastion: Setting up a bastion host requires additional work but
makes it easier to audit privileged activities performed on cluster nodes.
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Privileged Shell Access with oc_debug

Using the oc debug command as the kubeadmin user provides shell access
to an RHCOS node. Before setting out on this course, there are a few risk
elements to consider:

» Because the kubeadmin user has root (privileged) access to the nodes,
the kubeadmin account should be protected in the same manner as
root. See the kubeadmin User section of Chapter 5: Identity and Access
Management, to consider how to lock down this account and make use
of its privileges only in emergencies.

* While an audit can record the user invoking oc debug, there is no user-
specific auditing done of privileged activities once root shell access to
the node is established.

Once a privileged user understands the risks of using oc debug, that
command is used to debug a node as follows:

1 Get the name of the node to access:

$ oc get nodes

2 Use oc debug to connect to the node, replacing <yournode> with the
name of the node to access:

$ oc debug node/<yournode>
Starting pod/ip-10-0-136-20us-east-2computeinternal-

debug ..

To use host binaries, run “chroot /host"

If you don't see a command prompt, try pressing enter.
sh-4.2#
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This command starts a pod that runs the support-tools container and opens
a shell inside that container. The node’s root file system is available
from /host within that container.

3 Use chroot to open a bash shell that looks directly at the node's root
file system:

sh-4.3# chroot /host bash
[root@ip-10-0-136-20 /]#

4 Run toolbox to pullin a container that has a large set of debugging
tools someone can use to troubleshoot the node:

[root@ip-10-0-136-20 /]# toolbox
Trying to pull registry.redhat.io/rhel8/support-tools
...Getting image source signatures
Copying blob fd8daf2668dl done
Copying blob 1457434£891b done

At this point, any available troubleshooting can be run from the node or the
toolbox so that they act on the /host directory. Tools can be temporarily
installed. Some examples of useful troubleshooting commands include::

+ sosreport — This collects data about the configuration and ongoing
activities on the node for use in diagnosing problems or for passing on
to a support organization for help

« tcpdump — This displays data from network interfaces on the node

« strace — This can trace system calls and signals on a running process
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« fdisk — This displays, and allows, changes to information about disk
partitions

* Isof — show open files and network ports

Setting_up a Bastion Host

By creating a bastion host with access to the RHCOS nodes on the cluster, it
is possible to have a more secure and auditable way to gain access to those
nodes. A bastion host can be set up to:

+ Have separate login accounts for everyone accessing the bastion host
* Log who has accessed the bastion host
« Create user-specific keys to provide some level of log correlation
» Log across multiple nodes
Red Hat offers some guidance for setting up a bastion pod
(https://access.redhat.com/solutions/4073041) and deploying a bastion

host for OpenShift 4 on AWS
(https://access.redhat.com/solutions/4057081).

RHCOS Upgrades

Security practitioners are generally required to mitigate risk via consistently
applied OS updates. This ensures vulnerabilities are mitigated (“patched”)
and components work correctly. By managing the OS as part of the cluster,
the Machine Config Operator can apply upgrades automatically in a
coordinated fashion, minimizing the impact on the running cluster.

Red Hat delivers timely RHCOS updates to clusters as part of the OpenShift
release payload. Thus, RHCOS upgrades move consistently in lock step with
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cluster upgrades and share the same versioning and cadence. This ensures
RHCOS releases are in sync with cluster components. For example, the
container runtime (CRI-O) version needs to remain compatible with the
Kubernetes version used by the Kubernetes api-server. OpenShift promises
these compatibilities remain when an update arrives with the rpm-ostree
system. To ensure supply chain integrity, only release payloads with verified
signatures are applied to clusters.

Since MachineConfigs are highly flexible, custom MachineConfigs added by
a cluster admin may interact with the built-in MachineConfigs in unknown
ways during upgrades.

Cluster operators should track certain types of customized changes, so they
may be re-examined for impact during a change management review. This is
especially true when dealing with crio and kubelet configs since changes to
those configs can affect the cluster functionality. If a cluster has custom
MachineConfigs that :

+ overrides something in the base MachineConfigs

« depends on a file or service defined in an OpenShift-provided
MachineConfig

« depends on a specific package installed via the OpenShift Image or
cluster

..then upgrades should be cautiously applied.
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To ensure a smooth upgrade:

1

2

Roll out updates slowly, across various clusters and across nodes.

For extra caution, pause the relevant MachineConfigPool before
upgrade, run upgrade, check the rendered MachineConfigs after
the MachineConfig Controller updates them (confirm they were
upgraded by looking at the controller-version hash annotation on them).

Look over both the base MachineConfigs and the rendered
MachineConfigs for the relevant pool to make sure they look correct.

Unpause the MachineConfigPool to roll out updates to the nodes.
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3. Container Security

Linux containers are fundamental enablers of digital transformation
initiatives. Microservices architecture and cloud-native application experts
recommend that cloud-native applications are packaged, deployed, and
managed as container images, with the help of container orchestrators such
as OpenShift.

As an essential construct for logical separation of workloads, containers and
associated security features provide the compartmentalization needed to
enhance isolation and protection for both workloads and hosts. The security
capabilities derived from the Linux kernel are specified and blended to
achieve the desired security posture. Best practices suggest that the
resulting security configurations inherently do well at protecting the host
and workloads from each other.

Container and host security capabilities come from four large areas:

« Linux namespaces create a partitioning of system resources, forming
the logical boundaries around the structure of the container

« The secure computing (seccomp) feature provides a way to filter system
call availability within a container
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 Linux capabilities allow the reduction of privileges that would normally
be allowed within the context of the “root” user

« Security-Enhanced Linux (SELinux) enforces mandatory access control
for system processes, services, files, and network resources. Working
upstream with the National Security Agency, Red Hat introduced
SELinux in its Red Hat Enterprise Linux 4 product more than 15 years
ago.

This chapter will describe how to manage and orchestrate the
implementation of the features and capabilities provided by the facilities
described above.

Describing Linux Containers

To understand how containers affect security, multiple perspectives need to
be considered:

« From the operating system (OS) perspective, a container is just a
process that runs within a sandbox isolated from processes running
outside of its sandbox. A Linux host creates this sandbox using standard
kernel features such as namespaces, control groups, and SELinux.

« From a system administrator perspective, a container is an application
that is portable across different environments. This application is
deployed, unchanged, on different cloud providers, bare-metal servers,
and virtualized servers.

« From a developer perspective, a container is a way to package an
application together with all its dependencies. Containers provide a
universal packaging format that is not dependent on the programming
language runtime.
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Many IT professionals compare containers to virtual machines (VMs)
because both technologies provide isolation and universal packaging. The
following figure compares traditional applications, running as regular, non-
sandboxed processes, with some applications running on containers and

others running on VMs.
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Figure 3.1: The Workload and Infrastructure Evolution to Containers

Containers split the traditional packaging of an operating system into a
kernel layer and a user layer. The OS kernel layer runs on the host and
includes kernel and operating system services such as networked file system
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and time synchronization clients. The OS user layer includes operating
system libraries such as the glibc and tools such as the Bash shell.

A container runs a minimal user layer tailored for that specific application. All
containers share the OS kernel layer from the host. Containerized
applications still invoke system calls against the host layer and OS service
APIs using the same mechanisms as traditional applications. With containers,
there is no intermediate layer that adds overhead.

Comparing Containers and Virtual Machines for Application
Isolation

Both containers and virtual machines (VMs) isolate applications so that
vulnerabilities from one application do not affect other applications sharing
the same host. Most organizations cannot update the OS kernel layer for
security fixes quickly enough to respond to breaches because they first
need to ensure that the applications continue to work under the new
releases.

The host OS can be updated without breaking a containerized application
because most applications do not depend on a specific OS kernel and OS
service release. They depend on the OS libraries that provide access to
kernel system calls and to the APIs of OS services. Unlike a VM, a container
doesn't include its own kernel, limiting the container’s attack surface.

Container images enable faster continuous integration (Cl) and continuous
delivery (CD) pipelines because building container images is faster than
building VM images, and containers start faster than VMs. This allows
organizations to more frequently deploy production and reduces time on
security fixes.
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Creating Linux Containers with a Container Engine

A container engine provides a set of tools for tasks such as creating
container images and starting containers. CRI-O is the container engine of
OpenShift. As an implementation of the Kubernetes CRI (Container
Runtime Interface), CRI-O enables the use of OCI (Open Container
Initiative) compatible runtimes.

CRI-O is the default container engine for OpenShift 4, replacing Docker,
which was the default in OpenShift 3.11. From a security standpoint, CRI-O
was developed to:

« Align with Kubernetes releases
By aligning with Kubernetes releases, updates to CRI-O are always done
with the sole purpose of working better with the current Kubernetes
release.

« Have a reduced attack surface
The scope of CRI-O is tied to the Container Runtime Interface (CRI). By
not including extra features for direct command-line use or other
orchestration facilities, CRI-O’s footprint is smaller and vulnerabilities
are reduced.

« Improve performance
A smaller feature set encourages better performance among the
supported features.

 Allow the inclusion of different container runtimes
Currently, OpenShift supports the runc container runtime. However, as
other runtimes become available for full support, such as the Kata
Containers runtime, they can be supported by CRI-O.
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Most interaction with CRI-O is done by managing containers from the
OpenShift cluster. However, for advanced security issues, there are ways to
tune CRI-O or access CRI-O directly.

CRI-O Architecture

CRI-O is not supported as a stand-alone container engine and must be used
as the container engine for OpenShift. To run containers without OpenShift
use Podman on a RHEL host.

The Figure 3.2 shows the various OpenShift components and their role in
the creation of a pod. Please note that the directories /container/image and
/container/storage are given as an example and may differ depending on
specific deployments. By default, for OpenShift deployments, CRI-O
storage is under /var/lib/containers.
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Figure 3.2: CRI-O Interface with Kubernetes

CRI-O supports FIPS-Mode, in that it configures the containers to know
that they are running in FIPS mode.

Tuning CRI-O

While direct tuning of CRI-O is not encouraged, adaptation of CRI-O to
meet advanced security needs can be done by modifying the contents of
the /etc/crio/crio.conf file. In crio.conf, you can set such things as PID

limits to set the maximum number of processes allowed in a container. See
Chapter 2 : Red Hat Enterprise Linux CoreOS Security for information on
how to use a MachineConfig to change an RHCOS configuration file.
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Accessing CRI-O Directly

Just as CRI-O tuning is not encouraged, neither is direct access to CRI-O.
However, for debugging purposes, you can access CRI-O directly using the
crictl command from any OpenShift node. For example, on an OpenShift
node you could list running containers and see logging messages for a
specific container as follows:

# crictl ps

49f7832d3c4b9 quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha?256..

5 hours ago Running openvswitch 0b989143485eb

# crictl logs 49£7832d3c4b9

Other features in the crictl command can be used to manage containers and
container images on an OpenShift node. For examples of other uses of
crictl, see the crictl page on Github. A blog from Dan Walsh further details
the complementary relationship between crictl and Podman tools:
https://www.openshift.com/blog/crictl-vs-podman

Container Security in the Linux Kernel

The part of a container engine that effectively starts and monitors

containers is the container runtime. runc is the container runtime of
OpenShift.
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A container runtime leverages a number of Linux kernel features to start a
container:

« The main feature is namespaces. Namespaces create the sandbox that
isolates a process from other processes running outside of the sandbox.
Namespaces provide, among other things, a segregated view of the
process table, host file system, and network.

« Another important feature is control groups (Cgroups). Sandboxed
processes are regular processes managed by the host kernel sharing
host hardware resources, such as memory and CPU. Control groups
enforce limits on process consumption of CPU slices, memory pages,
and I/O capacity, preventing a single process from using up all the host
capacity for itself.

+ Though not strictly necessary to create a sandboxed process, SELinux,
capabilities, and seccomp complement namespaces and control groups
to prevent a process from breaking its confinement and interfering
indirectly with other processes in the same host.

Other software packages, such as operating system service managers,
systemd, and web browsers including Firefox, use some of the same kernel
features to run processes inside a sandbox. Linux containers are just one
specific scenario, though more general in purpose, of creating sandboxed
processes.

The main role of a container engine is to make it easier to leverage these
features by, for example, providing high-level command-line tools and
programming libraries that interface with a container runtime and container
registries. Without a container engine, a systems administrator would need
to manage each of these kernel features individually, using low-level OS
commands which would be very time-consuming and error-prone.
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A container runtime is, in essence, a helper that starts processes inside a set
of control groups and namespaces, under restricted SELinux contexts,
capabilities set, and seccomp settings.

A container runtime keeps track of the processes it started and assigns
them a container ID. These container IDs have meaning only to the container
runtime that created them. They have no meaning to the kernel.

A container engine also provides troubleshooting features such as starting
new processes under the same sandbox as an existing container. These are
useful for running diagnostic tools inside a container to inspect the state of
containerized processes and interface with file systems and networks in the
same way that the container does.

Figure 3.3 shows four broad areas of security parameters that can be
applied to containers. These areas will be covered in detail in the following
sections.
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System calls
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SELinux
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Security Context Constraints provide configuration
and management of these container security facilities.

Figure 3.3: Security Context Facilities
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Describing Linux Namespaces

Linux namespaces functionality is a kernel feature that provides resource
abstraction for processes. It is a way to change a process view of the system.
A process inside a namespace only sees the resources associated with that
namespace.

Linux namespaces provide an isolation level for several kinds of resources:
Process Identifier (PID), Inter-process Communication (IPC), network, UNIX
Time Sharing (UTS), mount points, control groups (cgroups), and user. For
example, processes in a network namespace have their own network stack
and cannot see network resources such as interfaces and listening ports
from other namespaces or the host system.

By providing that resource isolation layer, the Linux namespaces are an
essential part in the implementation of containers.

Introducing the Linux Namespaces Types
The Linux kernel provides the following namespaces:

PID : Processes in a PID namespace have their own process ID number
space. The first process in the namespace gets the PID 1. From outside, the
ps command still shows those processes, but the kernel maps the PID in the
namespace to a PID on the host system.

IPC: IPC namespaces isolate the System V IPC (interprocess
communication) resources. A process in an IPC namespace can only see and
use the IPC objects in that namespace.

Network : Processes in a network namespace have their own network
resources, such as devices, IP stacks, firewall rules, and routing tables.
Network namespaces enable the building of virtual networks.
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UTS: A UNIX Time Sharing namespace isolates the host name and domain

name. In this way, each namespace can have a custom host name. Changing
the hostname inside the namespace does not change the hostname on the
host system.

Mount : Processes in a mount namespace can only see the mount points in
that namespace. They cannot interact in any way with the mount points from
the host system or another mount namespace. Mount namespaces abstract
a complete file system view.

Cgroup : The system exposes the cgroups as a directory hierarchy under
/sys/fs/cgroup/. Cgroup namespaces restrict the view of that directory
hierarchy. This way the processes in a cgroup namespace cannot get any
information on the resource limits set to other processes on the system.
Notice that one set limits on resources at the cgroup level; cgroup
namespaces only restrict the view of the directory hierarchy.

User : User namespaces isolate the user and group identifiers. A process
inside a user namespace appears with a user ID (UID) and a group ID (GID)
that can be different on the host system. This is especially useful to give
root access to a process inside a container. Outside the container, the
system maps the process to an unprivileged user account. This way, a
vulnerable process that needs to run as root can do so inside its user
namespace. If it manages to escape the namespace, it only has the rights of
the associated unprivileged user account. User namespaces are already
available in host tools such as Podman but are not yet implemented in
Kubernetes.

A process can belong to different namespace types at the same time. It can
belong to a PID namespace which has its own process ID number space, and
to a network namespace and an IPC namespace.

90



Managing Resources with Cgroups

Control groups (or Cgroups for short) are a way of limiting access to system
resources.

Some of the different resources that can be limited are:
+ blkio — Sets limits on the available bandwidth to and from block devices
* cpu — Sets limits on the available CPU time

+ cpuset — Sets limits on the available CPUs and memory regions in
NUMA systems

¢ memory — Sets limits on the available memory

+ freezer — Task in this cgroup are suspended

These subsystems are also known as resource controllers or controllers.
OpenShift uses control groups to fairly distribute the available resources
between tenants. Cgroups also protect container processes from being
overrun by rogue or greedy processes.

Linux Capabilities

Traditionally, in Linux, there are two kinds of user identities : privileged and
non-privileged, with the root user being the privileged account that can do
anything. This absence of granularity has been problematic as processes
that need to perform any administrative tasks run as the privileged root
account and, in the absence of other protection mechanisms, can do
anything. Therefore, Linux provides capabilities — groups of superuser’s
powers that can be selectively enabled or disabled to limit the power the
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root user normally has. One can indeed think of the root user in the
traditional sense as possessing all existing capabilities.

Many containerized applications only need a subset of the root privileges,
for example a container running an httpd server might need to bind to port
80, the rest of its operations can be performed as a non-root user. In terms
of capabilities, the http server does need the CAP_NET_BIND capability even
when running as root in order to bind to a privileged port. On the other hand,
there is no reason most containers need to set the system time, which
normally root would have allowed, so there is no need for them to have the
CAP_SYS_TIME capability.

root _  —
Classic “root” - before "root" with ‘root” with
the Linux 2.2 kernel distinct capabilities reduced capabilities

Figure 3.4: Understanding Root’s Reduction in Capabilities

The classic behavior of the root user (illustrated in the first box of Figure
3.4) saw all capabilities enabled — this reflects the root user’s capabilities
before the introduction of the Linux 2.2 kernel. The second box indicates
that with the Linux 2.2 kernel the notion of root privileges were split into
distinct units called capabilities. An overview of all available capabilities can
be found in the “capabilities” manual page.

The capabilities of a running container on a RHEL host can be viewed by
running podman inspect $container. Notice that the default capability set
doesn't include CAP_SYS_ADMIN, because if a malicious actor or process took
control of the container, CAP_SYS_ADMIN would easily allow access to the host
kernel. For example, the process to mount file systems could be used to
remount one of the read-only file systems such as the /sys filesystem, as
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read-write because the CAP_SYS_ADMIN was improperly added to the
container.

When running containers locally with podman, a capability might be added
or dropped from the default set using the --cap-add or --cap-

drop parameters, respectively. For example, one can run ntpd in a container
and allow it to set the system time by running:

$ sudo podman run -d --cap-add SYS_TIME ntpd

With OpenShift, capabilities are added or removed relative to the default set
that the container runtime provides and can be set in the

securityContext attribute of a container. Note that there also exists a
securityContext attribute on the pod level.

While the container level securityContext generally overrides the pod level
securityContext, it also has some extra fields of which capabilities is one.

With that in mind, let’s schedule a pod that drops the CAP_SYS_CHOWN
capability, and even though it runs as root, it's not permitted to change
ownership of the /tmp directory. Using a pod definition such as:

$ cat pod-drop-caps.yaml
apiVersion: "v1"
kind: Pod
metadata:
name: caps-test
spec:
containers:
- name: caps-container
image: registry.access.redhat.com/ubi8/ubi
command: ["/bin/sh"]
args: ["-c", "chown bin.bin /tmp; 1ls -1d /tmp"]

securityContext:
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capabilities:
drop:
- CHOWN
restartPolicy: Never
$ oc create -f pod-drop-caps.yaml
pod/caps-test created
S oc logs caps-test
uid=0(root) gid=0(root) groups=0(root)
chown: changing ownership of '/tmp': Operation not permitted

drwxrwxrwt. 1 root root 6 Mar 31 14:54 /tmp

Security Context Constraints (SCCs) provide the facility that controls
security capabilities allocation during pod creation. This is what prevents a
user from arbitrarily adding powerful privileges such as CAP_SYS_ADMIN.

In SCC instances, there are three fields related to capabilities :

* requiredDropCapabilities: These capabilities will always be dropped
and cannot be added

* allowedCapabilities: These capabilities can be added. There are two
special values null and * that can be added. Null means that no
additional capabilities can be added and * means that any capability
can be added.

+ defaultAddCapabilities: These capabilities will be added to the pod
unless the pod explicitly drops them
Regular users are restricted by the SCC/restricted SCC which has the

relevant attributes set to the following values:

allowedCapabilities: null
defaultAddCapabilities: null

requiredDropCapabilities:
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KILL
MKNOD
SETUID
SETGID

This means that the user constrained by the restricted SCC cannot gain any
new capabilities. Let's try this out by running a pod that would gain the
CAP_SYS_ADMIN capability, essentially becoming root.

$ oc whoami

userl

With a pod:

apiVersion: "v1"
kind: Pod
metadata:
name: caps-test
spec:
containers:
- name: caps-container
image: registry.access.redhat.com/ubi8/ubi
command: ["/bin/sh"]
args: ["-c", "cat /proc/l/status"]
securityContext:
capabilities:
add:
- SYS_ADMIN

restartPolicy: Never
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This results in an error before the pod is even created :

$ oc create -f pod-add-caps.yaml

Error from server (Forbidden): error when creating "pod-add-
caps.yaml": pods "caps-test" is forbidden: unable to validate
against any security context constraint: [capabilities.add:
Invalid value: "SYS_ADMIN": capability may not be added]

By default, in OpenShift, only the privileged SCC allows capabilities to be
gained, but all SCCs allow capabilities to be dropped. Learn more about
SCCs later in this chapter and in the official OpenShift documentation.

Secure Computing (seccomp) Profiles

Typically, a container or an OpenShift pod runs a single application that runs
one or a set of well-defined tasks. Therefore, the application usually requires
only a small subset of the underlying operating system kernel APIs — for
example, a container running an httpd server has no business calling the
mount (2) system call. At the same time, all containers on the host, which
might run many different applications, share the same kernel which is used
by the host itself (using the previous example, the host surely does need the
mount syscall) and would have access to the whole kernel API.

To limit the attack vector of a subverted process running within a container,
the seccomp (secure computing mode) Linux kernel feature can be used to
limit the process running in a container to only call a subset of the available
system calls. Both Podman and OpenShift ship with default seccomp
profiles that are used for a container unless otherwise specified. The default
profiles cut the number of available syscalls substantially, from over 300
available in Linux kernel 5.x, to roughly half. That number is still more than a
typical application would use.
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Let's show seccomp in action. With Podman on a RHEL host, the default
seccomp policy is stored at /usr/share/containers/seccomp. json, optionally
overridden by /etc/containers/seccomp.json. Our example application will
be just1s /, which can be initiated with podman run fedora:latest 1ls /.As
the next step, we're going to modify the default seccomp policy and remove
the stat() system call, which is what Is used to learn the details about the /
directory. Copy the file /usr/share/containers/seccomp.json to another
location, remove the stat (1) call, and run the podman invocation again, this
time pointing at the edited policy:

$ cp /usr/share/containers/seccomp.json /tmp/seccomp.json

$ vim /tmp/seccomp.json # remove the stat call
$ podman run --security-opt seccomp=/tmp/seccomp.json -it
fedora:latest 1s /

This command would now fail because the new seccomp profile no longer
allows the Is binary to execute the stat (1) syscall. Even though this is a
negative example, we brought a well-functioning application and broke it
with a too restrictive policy, and hopefully it illustrates the point:

$ podman run --security-opt seccomp=/tmp/seccomp.json -it
fedora:latest 1ls /

ls: cannot access '/': Operation not permitted

In OpenShift, any pod annotated with
seccomp.security.alpha.kubernetes.io/pod would use the seccomp profile
specified in value of the annotation. The annotations are checked by the
SCC admission controller against the current SCC linked to the current
user’s role. If the seccomp profile is allowed for this user, the kubelet runs the
pod on a node with the specified seccomp profile. Note that the profile
definition file must exist on the node where the pod is scheduled.

To putit all together, in order to schedule a pod with a custom seccomp
profile, one needs to:
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« Make sure the seccomp policy exists on the node. The default directory
for the seccomp profilesis at /var/lib/kubelet/seccomp/

» Make sure the profile is allowed in an SCC linked to the role of the user
scheduling the pods

« Annotate the pods with the desired seccomp profile

Let's try the same example as we showed earlier with podman, this time in
an OpenShift environment. Copy the default CRI-O seccomp profile
(/etc/crio/seccomp.json) from one of the cluster nodes to your local
system. To do this, open a debug session, then copy the file from the debug
pod to your local system::

I $ oc debug node/ip-10-0-164-156.ec2.internal

With the debug session still active, from a second shell, log in to the cluster
(oc login), then copy the file to your local system:

S oc cp \ default/ip-10-0-164-156ec2internal-
debug:host/etc/crio/seccomp. json

$ cp seccomp.json seccomp-nostat.json

$ vim seccomp-nostat-json # remove the “stat” system call

S diff -u seccomp.json seccomp-nostat.json
—-—— seccomp.json 2020-04-09 21:11:56.410394097

+0200
+++ seccomp-nostat.json 2020-04-09 19:57:20.113819802 +0200
@@ -318,7 +318,6 @@
"socketcall",
"socketpair",
"splice",
= "stat",

"stat64",
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"statfs",

"statfsé64",

Next, using MachineConfig, upload the file to
/var/lib/kubelet/seccomp/seccomp-nostat.json. Follow the Machine
Config Operator documentation, just substitute the content and the paths.

Once the file is there, create a pod using a profile such as the one below:

apiVersion: "vl1"
kind: Pod
metadata:
name: seccomp-test
annotations:
seccomp.security.alpha.kubernetes.io/pod:
"localhost/seccomp-nostat.json"
spec:
containers:
- name: seccomp-container
image: registry.access.redhat.com/ubi8/ubi
command: ["/bin/1ls", "/"]

restartPolicy: Never

If the pod is run now, the Is command will fail, because it's not allowed to
execute the stat (1) system call:

S oc create -f pod-seccomp.yaml
$ oc get pods
NAME READY STATUS RESTARTS AGE
seccomp-test 0/1 Error ¢}
42m

$ oc logs seccomp-test

ls: cannot access '/': Operation not permitted
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In addition to the localhost/path/to/profile annotation value, there exists
areserved value runtime/default that will make sure that the pod uses the
default policy of the CRI-O runtime. It is recommended that either the
runtime default or a more restrictive policy is used.

It should be noted that no security technology exists in isolation; rather they
are layered. Seccomp profiles coexist with Linux capabilities; for example, it
is possible to allow a certain syscall on condition that a process also has a
capability set. It is possible to allow certain syscalls only if a process has a
capability set:

"names": [
"delete_module",
"init_module",
"finit_module",
"query_module"

1,

"action": "SCMP_ACT_ALLOW",

“args": [1],

"comment": "",

"includes": {
"caps": [

"CAP_SYS_MODULE"
]
3,
"excludes": {}

For example, the above permits the process to call the init_module or
delete_module system calls, but only if the calling process also has the
CAP_SYS_MODULE capability.
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Writing seccomp profiles for an application can be tedious and often
requires deep knowledge of the application in addition to the programming
language or framework. As an example, the developer must be aware that a
framework that sets up a network server to accept connections would
translate into calling the socket(2), bind(2), and listen(2) system calls. On
the one hand, writing a seccomp policy that is too loose might leave some
syscalls wide open. On the other hand, write a seccomp policy that is too
tight and the application would fail with errors such as, Permission denied.
Since most real-world seccomp profiles would probably err on the side of
being a little loose, it is important to layer security protections to make sure
that if a malicious actor bypasses one layer, such as seccomp, they would be
stopped by another layer, such as the capabilities or SELinux.

Unfortunately, currently there are no tools or operators provided by
OpenShift that would help develop the seccomp profiles. There are some
third-party tools, or alternatively, the developer might want to trace the calls
made by their application in a Cl pipeline through tools such as eBPF and
continuously augment their seccomp policy. A talk by Dan Walsh on the
topic outlines some of the available options.

Security-Enhanced Linux

Security-Enhanced Linux started as a project within the National Security
Agency (NSA) to bring mandatory access control (MAC) to Linux. Since its
introduction, subsequent SELinux development has been a joint effort
between the NSA, Red Hat, and the community of SELinux developers.
Given the availability of many other facilities that can improve the security
and isolation of containers, SELinux presents as an integral component that
ensures containers embrace the mandatory access control posture. In this
regard, SELinux enhances the container security experience by truly
separating containers from each other while protecting the host in an
intuitive manner.
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Basic Concepts

As other authors have already mentioned, SELinux is a labeling system. This
means that everything in Linux has a label :

* Processes

« Files

+ Directories

+ System objects
Policy rules control access between processes and objects, e.g. a process
labeled container_t can access files labeled container_file_t.

With SELinux enabled, everything is denied unless there is a rule that
explicitly allows it. This makes for a very solid security policy.

Labels for objects are called SELinux contexts, and contexts themselves
are composed of user, role, type, and security level. Something to keep in
mind when writing policies is that it is normal to specify that a certain
SELinux type can interact with another SELinux type. It is not common to
specify the full context of an object. So, a container running on a node would
have an SELinux context as follows:

System_u :system_r:container_t:s0:c667,c123
Where:
« system_uis the user

« system_ris the role
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« container_t is the type; this is also sometimes referred to as domain

* S0:c667, c123 is the security level or MCS label

Unconfined Domains

Normally, in Red Hat systems, every provided RPM package comes with an
SELinux policy which enables the process to run securely. If installing a
binary out-of-band that normally won't come with an SELinux policy, run
that binary with an unconfined domain (unconfined_t). This type is allowed
to do almost anything in the system and should normally not be used for
daemons. Instead, this is meant to allow users to interact with the system
without SELinux blocking them.

SELinux in Containers

While SELinux wasn't designed specifically to address container security,
there was already previous work done on securing virtual machines. Similar
concepts were taken into use and were adapted towards securing
containers.

One important thing to consider is that all containers are started, by default,
with the label, container_t. This is a predefined label that already has a
policy attached to it. It is already very constrained, which makes it a great
default!

For practical usage, containers with the container_t can:
* Read, write, and execute files labeled container_file_t

+ Read and execute files labeled usr_t, which are filesin /usr
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» Read files labeled etc_t, which are files under /etc

+ Bind to any unused port on the host

There are other capabilities and details for this label, but these are better
left as implementation details.

Normally, any process running as container_t would be able to interact with
any file labeled container_file_t; this behavior would then imply that
containers can interact or meddle with each other's files. It would then be
possible for a container to tamper with another container’s sensitive data,
which is undesirable. Fortunately, there is another mechanism that protects
containers from attacking each other, and these are the MCS labels.

MCS stands for Multi-Category Security and it comes from Multi-Level
Security. In practical terms, each container gets assigned its own MCS label,
and so only they can access objects with a matching MCS label. They can,
however, access objects that don't have a category set.

Let's take a look at a quick example:

[ container_t:sO:cl,c2 ] ( container_t:s0:c2,c3 ]

w4 %

container_file_t:s0:cl,c2 container_file_t:sO container_file_t:s0:c2,c3

Figure 3.5: Multi-Category Security Labeling for Containers
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In this case, we have two containers:
« Both containers use the default container_t label
« They're both trying to access files with the container_file_t label

* container_t:s0:cl,c2 has amatching MCS label as
container_file_t:s0:cl,c2 granting it access

° container_t:s0:cl,c2 cannot access
container_file_t:s0:c2,c3 because the MCS label doesn't match

* Both container_t:s@:cl1,c2 and container_t:s0:cl,c2 can access
container_file_t:s0 since that file doesn't have a category set. In such
cases, the file can be shared between containers

Podman
Let's solidify the concepts that we outlined a little while ago.

To find out whether a podman installation supports SELinux labeling, do the
following :

$ podman info | grep -i selinux
+SYSTEMD +SELINUX +APPARMOR +CAP +SECCOMP +EBPF +YAJL

Let's run a simple container with podman :

$ podman run -ti registry.access.redhat.com/ubi8/ubi
/bin/bash

In another terminal, let’'s now inspect that container:

$ podman ps
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CONTAINER ID IMAGE
COMMAND CREATED STATUS
PORTS NAMES
3fdf4f63ab82 registry.access.redhat.com/ubi8/ubi:latest
/bin/bash 2 minutes ago Up 2 minutes ago

priceless_jones

S podman inspect 3fdf4f63ab82 | jg ".[0].MountLabel"

"system_u:object_r:container_file_t:s0:c116,c225"

S podman inspect 3fdf4f63ab82 | jg ".[0].ProcessLabel"

"system_u:system_r:container_t:s0:cll16,c225"

S podman inspect 3fdf4f63ab82 | jg -r ".[0].State.Pid"

xargs ps uZ

LABEL PID TTY STAT
TIME COMMAND

system_u:system_r:container_t:s0@:cl16,c225 777931 pts/0O Ss+
0:00 /bin/bash

Let's now create a container that bind-mounts a directory that's shared

between containers:

S mkdir container-public

$ echo "This is accessible by all containers" >
container-public/text.txt

S podman run -ti -v=./container-public/:/public:z
registry.access.redhat.com/ubi8/ubi /bin/bash

[root@14feb9b28937 /]# cat /public/text.txt

This is accessible by all containers

The -z option at the end of the volume declaration told podman to relabel

that directory in such a way that it's shared between containers. We can

verify this in another terminal :
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$ 1s -Z container-public/

system_u:object_r:container_file_t:s0O text.txt

We can easily spawn another container that mounts that directory and takes
that file into use:

$ podman run -ti -v=./container-public/:/public:z
registry.access.redhat.com/ubi8/ubi /bin/bash
[root@eeaf7d80f49a /]# cat /public/text.txt

This is accessible by all container

What happened in the background is that podman re-labeled the directory
to use the container_file_t domain with the MCS label so.

Let's now spawn another container that mounts a directory with a non-
shared MCS label:

$ mkdir container-private

$ echo "This is private" > container-private/text.txt
$ podman run -ti -v=./container-private/:/private:Z
registry.access.redhat.com/ubi8/ubi /bin/bash
[root@e42033efb780 /]# cat private/text.txt

This is private

In another terminal ;

$ podman ps
CONTAINER ID IMAGE
COMMAND CREATED STATUS

PORTS NAMES
e42033efb780 registry.access.redhat.com/ubi8/ubi:latest
/bin/bash 42 seconds ago Up 41 seconds ago

hungry_jones
S podman inspect e42033efb780 | jg ".[0].MountLabel"
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"system_u:object_r:container_file_t:s0:c329,c433"
S 1s -Z container-private/

system_u:object_r:container_file_t:s0:c329,c433 text.txt

As we can see, Podman relabeled the file with the appropriate MCS label
that matches the one the container has set.

So, what happens if we spawn another container that bind-mounts that
same directory?

S podman run -ti -v=./container-private/:/private:Z
registry.access.redhat.com/ubi8/ubi /bin/bash
[root@bfOaae021337 /]# cat /private/text.txt

This is private

The container was able to read the file. So, what happened? Let's look at this
a little closer.

S 1s -Z container-private/
system_u:object_r:container_file_t:s0:c275,c578 text.txt
S podman inspect bfBaae021337 | jg ".[0].MountLabel"

"system_u:object_r:container_file_t:s0:c275,c578"

As we can see, Podman relabeled the directory, and it's now private to the
new directory. So, what happened to the previous container we had?

[root@e42033efb780 /]# cat private/text.txt

cat: private/text.txt: Permission denied

Since the directory was relabeled, the first container (e42033efb780)
doesn’t have access to that file anymore. Effectively making it private for
the second container (bfOaae021337).
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Kubernetes

Kubernetes has the option to assign SELinux labels to containers. This is
part of the normal pod specification and no special extensions are needed
for this. OpenShift, being a Kubernetes distribution, will take these
specifications into use and they will be executed by CRI-O which is the
Container Runtime Interface (CRI) that's installed, by default, in OpenShift.

SELinux settings live under the SecurityContext section of the pod’s
specification file. The SELinux options for the container can be set as
follows :

apiVersion: vl
kind: Pod
metadata:
name: my-pod
spec:
containers:
- name: my-container
image: registry.access.redhat.com/ubi8/ubi:latest
command: ["/bin/bash"]
args: ["-c¢", "while true; do sleep 2; done"]
securityContext:
seLinuxOptions:
type: container_t
level: s0:c275,c578
volumeMounts:
- name: priv-dir
mountPath: /container-private
restartPolicy: Never

volumes:
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- name: priv-dir

emptyDir: {}
There are some things to note from this:

« Evenif the APl allows it, there is no need to set the user and role
parameters of the seLinuxOptions.

* In this case, the type (domain) container_t specified is already the
default that's used by CRI-O. Specifying any other type is possible, but
it has to be installed on the host.

« We specified a level (MCS label) of s0:¢275,c578 which effectively
makes the volume private for that specific container.

« To use a specific context, given the declarative nature of Kubernetes,
explicitly tell Kubernetes to use that context.

Let's dig into what's going on here! And, for this, we need to log into the host
and check:

sh-4.4# crictl ps --name my-container
CONTAINER IMAGE

CREATED STATE NAME
ATTEMPT POD ID

d2£39c15bccOb
registry.access.redhat.com/ubi8/ubi@sha256:1f0e6elf451f
f020b3b44clc4c34d85db5ffa@fclbb0490d6a32957a7a06b67f 3
minutes ago Running my-container
(0] 4£29c6blc4d75

sh-4.4# crictl inspect d2£39cl15bccOb
{

"status": {
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"id":
"d2£39c1l5bccObedabec67c35828216745a2¢c32edd19333a12b8c56d3b39c84
of",

"metadata": {

"attempt": 0,
"name": "my-container"
3,
"state": "CONTAINER_RUNNING",

"mounts": [

{
"containerPath": "/container-private",
"hostPath": "/var/lib/kubelet/pods/12387098-3b5a-
4ab6-9a26-4d5cf971acf3/volumes/kubernetes.io~empty-dir/priv-
dir",
"propagation": "PROPAGATION_PRIVATE",
"readonly": false,

"selinuxRelabel": false
1,

sh-4.4# cd /var/lib/kubelet/pods/12387098-3b5a-4ab6-9a26-
4d5cf971acf3/volumes/kubernetes.io~empty-dir/

sh-4.4# 1s -17

total 0
drwxrwxrwx. 2 root root
system_u:object_r:container_file_t:s0:c275,c578 6 Apr 8 15:02

priv-dir

What we did here was looked for our container running on the system,
checked the directory created to fulfill that volume mount, and verified that
the directory has the MCS label we specified in the level parameter.

There is a caveat for SELinux relabeling volumes in Kubernetes. Given that
operations on the host could potentially damage the deployment, the CRI
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won't attempt to relabel a hostPath.

If we want a directory to be shared within containers, we can specify that as

follows::
seLinuxOptions:
level: sO

OpenShift has some extra levels of security and automation when it comes
to the usage of SELinux relabeling. This depends on the Security Context
Constraint that the service account used to spawn the pod that it is able to
use. We'll talk more about this in subsequent sections.

How does SELinux Protect me from Attacks?

While SELinux is not included in some Kubernetes distributions, its inclusion
in OpenShift has provided protection from several major CVEs. For
instance::

« CVE-2015-3627 — Insecure opening of file-descriptor 1leading to
privilege escalation

« CVE-2015-3630 — Read/write proc paths allows host modification and
information disclosure

« CVE-2015-3631 — Volume mounts allow LSM profile escalation
+ CVE-2016-9962 — RunC Execution Vulnerability

« CVE-2019-5736 — Execution of malicious containers allows for
container escape and access to the host file system
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The reason it has protected the host in so many instances is the labeling
system itself. Containers run with a container_t domain. Even if a container
escape would happen (and it can), the container_t doesn't have permission
to access other files on the host, so any actions that the attacker might try
to execute on other labels will be blocked.

Writing Policies with udica
Why?

While the default policy already provides a very secure default and can
handle most cases, there are times where the default policy is too restrictive,
and other times where it's too loose.

Scenario #1:

While deploying a log forwarding solution, there is a need to mount the
host's log directory (/var/log). container_t doesn't allow access to the
logging directory (which has a var_log_t type). Relabeling /var/logis not
an option because other components wouldn't be able to write to their logs.
This would break the system. So, in this case, the default policy is too
restrictive for the scenario.

Scenario #2:

container_t gives the container permission to listen on any port on the
host, however, there is a need in this case to add permission to just listen on
ports labeled with http_port_t. To restrict the container to only allow
permission to listen for traffic on standard HTTP ports (e.g. 80, 8080, 443),
the default policy is too permissive.
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udica

udica is a project that aims to assist developers with writing policies for their
containers in a faster and more intuitive manner. Instead of having to write
policies from scratch, udica relies on a concept called block inheritance,
where blocks of ready-made policy are available for use to develop policies
from. Udica also provides a utility that reads container definition and
automatically generates a policy.

Let's look at an example:

We want to run a container that mounts the home directory as well

as /var/spool, and that listens on port 21. Clearly, in this case, the default
container policy will be too restrictive, so we wouldn’t be able to use it. Let’s
giveitatry:

$ podman run -v /home:/home:ro -v /var/spool:/var/spool:rw —-p
21:21 -it registry.access.redhat.com/ubi8/ubi /bin/bash
[root@c2f7755ef5b8 /1# 1s /home/

ls: cannot open directory '/home/': Permission denied
As expected, SELinux blocks us from accessing that directory.
Let's use udica to generate a policy:

$ podman inspect c2f7755ef5b8 | udica my_container

Policy my_container created!

Please load these modules using:

# semodule -i

my_container.cil /usr/share/udica/templates/{base_container.cil
,net_container.cil,home_container.cil}
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Restart the container with: "--security-opt

label=type:my_container.process" parameter
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After following the instructions that udica provides, it's simple to use the
policy :

$ podman run -v /home:/home:ro -v /var/spool:/var/spool:rw -p
21:21 \

—-—-security-opt label=type:my_container.process \

-it registry.access.redhat.com/ubi8/ubi /bin/bash
No relabeling needed!

This same process can be taken into use in OpenShift given that udica can
also read CRI format through using crictl inspect command. It would be
necessary to install the policy in each node of the cluster and subsequently
take it into use as follows :

securityContext:
seLinuxOptions:

type: my_container.process

The process for using it with Kubernetes requires manual adaptation for now
but Red Hat is working hard to make developers' lives easier. More
automation will come in the near future.

Security Contexts Constraints

In Red Hat OpenShift Container Platform, Security Context Constraints
(SCCs) restrict privileges for pods. This allows enforcement or relaxation of
their capabilities, thus ensuring that running applications do not use
privileges that they do not need. SCCs are similar to policies, which enforce
certain actions or prevent others from a service or a user. By using SCCs, the
level of privileges can be precisely controlled for the application and the
user's applications, and if needed, give them more permissive or more
restrictive privileges.
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SCCs are OpenShift resources; they define a set of conditions (or rules) that
a pod must satisfy in order to be created (or admitted in the cluster). An
OpenShift Container Platform ships with a set of SCCs, from a restrictive
policy that restricts the root user in pods and drops certain Linux
capabilities, to a more permissive policy that allows the root user in pods, the
usage of any UIDs and GIDs, and access to the container host file system.

By default, for authenticated users, resources deployed in a project inherit
the restricted security context, which prevents applications from running as
root and escalating privileges (allowPrivilegeEscalation). This security
context also blocks certain capabilities, such as mknod or setuid, which
further increases the security of the environment. If an attacker performs an
exploit and breaks out of the container, they still do not have root access to
the container’s host.

Use SCCs to manage the following security settings:
Privilege mode

This setting allows or prevents the container from running in privileged
mode, that is, having access to the underlying container host resources, such
as hardware devices. This mode bypasses many restrictions, such as
Cgroups, Linux capabilities, seccomp profiles, and usage of specific users or
group IDs.
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Privileges escalation

This setting enables or disables privilege escalation inside a container (the
allowPrivilegeEscalation flag).

Linux capabilities

This setting allows addition or removal of Linux capabilities to and from
containers. For example, dropping the KILL capability which prevents a user
from killing processes they do not own.

Seccomp profiles

This setting allows specification of which Seccomp profiles are allowed to be
used by the pod. Seccomp profiles in turn allow or block certain system calls.
For example, block the mount system call to prevent the container from
attempting to mount directories if it doesn’t need to.

Volume types

This setting allows permitting or preventing certain volume types from being
accessed by applications; this includes persistent volumes, configuration
maps, and temporary directories (empyDir).

System control (Sysctl) settings

The Sysctl interface allows modification of kernel parameters at runtime. It
allows tuning of the kernel in real time. Use this SCC setting to allow or
prevent certain system controls from being executed.

Host resources

This set of settings allows permitting or prevention of a pod accessing the
following host resources : IPC namespaces, host networks, host ports, and
host PID namespaces.
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Read-only root system

This setting allows making the root file system read-only. This prevents any
changes and forces users to mount a volume if they need to store data.

User and group IDs

These settings allow restriction of the allocation of user and group IDs to a
specific range. Those are useful settings for restricting users to a certain set
of ID or GIDs.

SELinux labels

This setting allows definition of a SELinux label to the pods. OpenShift
supports all available SELinux fields : user, role, type, and level.

File system groups

This setting allows definition of supplemental groups for the user, which is
usually required for accessing a block device. This allows provision of
adequate access to block storage, such as Ceph RBD, and iSCSI.

SCCs are OpenShift resources that can be listed with the oc get
scc command

S oc describe scc restricted

Name: restricted
Priority: <none>
Access:
Users: <none>
Groups:

system:authenticated

Settings:
Allow Privileged: false
Allow Privilege Escalation: true
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Default Add Capabilities: <none>
Required Drop Capabilities:

KILL,MKNOD,SETUID,SETGID
Allowed Capabilities: <none>
Allowed Seccomp Profiles: <none>

Allowed Volume Types:
configMap,downwardAPI,emptyDir,persistentVolumeClaim,projected,

secret
Allowed Flexvolumes: <all>
Allowed Unsafe Sysctls: <none>
Forbidden Sysctls: <none>
Allow Host Network: false
Allow Host Ports: false
Allow Host PID: false
Allow Host IPC: false
Read Only Root Filesystem: false
Run As User Strategy: MustRunAsRange
UID: <none>
UID Range Min: <none>
UID Range Max: <none>

SELinux Context Strategy: MustRunAs

User: <none>
Role: <none>
Type: <none>
Level: <none>

FSGroup Strategy: MustRunAs
Ranges: <none>
Supplemental Groups Strategy: RunAsAny

Ranges: <none>
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Managing SELinux Context with SCCs

SELinux contexts can be managed for the container's main process by using
SCCs. The SELinux Context setting allows management of a strategy; the
restricted SCC defines a strategy of MustRunAs, which forces the pods of
the project to define an SELinux policy but does not define any values for
SELinux contexts, which means that the project must define the options,
such as user, role, type, and level. Failure to do so prevents pods from being
created.

If a custom SELinux type needs to be used, either create a custom SCC that
allows this type, or use the privileged SCC (and do not set the privileged
optionin the securityContext) since this would allow open setting of the
security settings.

What is a Privileged Container?

In a few cases, there might be a need to deploy a container with fewer
restrictions than the ones that are set by default. A privileged containeris a
container with all capabilities enabled, fewer seccomp restrictions, and uses
a SELinux domain of spc_t.

One would normally set it up by setting the privileged flagin the
securityContext section of the pod as follows:

securityContext:

privileged: true

While it might seem simple and tempting to enable this (since it will work
around any restrictions), using privileged containers is discouraged as it
basically gives full root capabilities on the host. The container will have
an SELinux context of spc_t which is equivalent to an unconfined domain,
so SELinux won't be able to block attacks as it normally would.
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Fortunately, OpenShift limits the ability of users to deploy privileged
containers. This is done by limiting the usage of such containers through the
privileged Security Context Constraints (SCC).

Container Image Security

This section outlines several approaches to make consuming container
images safer. It does not go into detail on how to properly secure container
images themselves. For information on how to build secure container
images, see Chapter 9: Securing CI/CD.

During development, it might be tempting to just run whatever arbitrary
content gets the job done. But, with the ease that containers can be
produced and published comes the risk of running dangerous content, either
locally or in a cluster. There are several mitigation strategies that can be
implemented:

« Establish a whitelist of allowed registries : This ensures that the
container runtime can only pull images from certain sources

* Require that only fully qualified image names are used to reference
images to prevent multiple container registries from becoming mixed up

 Verify signatures of container images to ensure containers were built by
a trusted party

Registry Configuration Sources

There are two files that configure the properties of registries :
/etc/containers/registries.conf and /etc/containers/policy.json.
Even though the registries.conf file is also allowed to include a registries’
blacklist, it is recommended that the list of registries is set in policy.json as
the policy. json file gives greater flexibility and is supported by all container



runtimes. The registry.conf file is then used to set any optional registries
that accept unqualified names.

When running containers locally with podman, go ahead and edit those two
files. With OpenShift, the configuration method depends on what aspect
needs to be configured. There is a CustomResource named Image that allows
setting of allowed or blocked registries. There is only one instance of the
resource using the reserved name cluster. This custom resource is rendered
into the registries.conf and policy.json files by the machine-config-
operator. Unfortunately, if anything else needs to be configured, such as
registries without qualified names, or image signing set up, create the
registries.conf and policy.json files manually and push them to the
cluster as MachineConfigs.

Container Registry Whitelist

With OpenShift, the most straightforward way to configure a registry
whitelist is to set the allowedRegistries attribute in the
image.config.openshift.io/cluster resource. Even though the
Image.config.openshift.io custom resource also supports setting up
blacklists, a whitelist is always inherently safer.

Run oc edit image.config.openshift.io/cluster and make a list for allowed
registries in the registrySources.allowedRegistries attribute, for example:

apiVersion: config.openshift.io/v1l
kind: Image
# metadata omitted for clarity
spec:
registrySources:
allowedRegistries:
- myregistry.com

- registry.redhat.io
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- registry.access.redhat.com

status:
internalRegistryHostname: image-registry.openshift-image-

registry.svc:5000

This file would be rendered by the MCO into
/etc/container/policy.json on the nodes with content along these lines:

"default": [{"type": "reject"}1],
"transports": {
"atomic": {
"myregistry.com": [
{"type": "insecureAcceptAnything"}
1,
"registry.redhat.io": [
{"type": "insecureAcceptAnything"}
[P
"registry.access.redhat.com": [
{"type": "insecureAcceptAnything"}
P
"o [{"type": "reject"}]
Y,
"docker": {
"myregistry.com": [
{"type": "insecureAcceptAnything"}
(P
"registry.redhat.io": [
{"type": "insecureAcceptAnything"}
I,
"registry.access.redhat.com": [

{"type": "insecureAcceptAnything"}

I,
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uu: [{"type": nre]-ectu}
1

As the container registry does not have a notion of what kind of a transport
protocol the registry implements, the Machine Config Operator adds all
entries for both the atomic and the Docker protocols. This might be
significant if there is need to express more complex matching rules as each
transport protocol evaluates the matches differently — and in this case,
needs to push a particular version of the policy.json file instead of relying on
rendering the file from the image.config.openshift.io/cluster object
using MachineConfig objects.

More details about the matching details can be found in the policy.json
manual page. Let’s just point out two important pieces from the
policy.json, as highlighted in the example above. The ones highlighted in
red are the default policy for transports not explicitly mentioned and per-
transport default policy. It is important that these defaults are set to reject
and select transports, and that scopes of transports are enabled rather than
the other way around.

Fully Qualified Image Names and Registry Search List

The registry search list can be used as a convenience feature in order to be
able to pull container images using their short name. Consider these two
calls:

$ podman pull ubi8/ubi:latest
$ podman pull registry.redhat.io/ubi8/ubi:latest
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Clearly, the first one is easier to type, but with the second format, there is a
greater degree of knowledge of where the image comes from. It is
recommended that only fully qualified image names are used if more than
one registry is allowed in the environment. For example, instead of
ubi8/ubi:latest there is only an allowance to pull
registry.redhat.io/ubi8/ubi:latest. The rationale behind this is that when
a short name is used and the system is configured to use multiple registries,
there exists the risk that an attacker might place an image with the same
short name to a registry earlier in the search list, especially when using
public registries. Any public registries should either not be allowed to pull
with a short name at all or be at the very last position in the search list.

Configuration-wise, this boils down to only using trusted registries on a line
starting with the unqualified-search-registries of the
/etc/containers/registries.conf file, for example:

S cat /etc/containers/registries.conf
unqualified-search-registries=[ ‘myregistry.com’,
'registry.access.redhat.com']

In case only fully qualified names are to be allowed, just omit the
unqualified-search-registries line from the file.

Image Signing

How to ensure that a container image about to be run has not been
tampered with and is really what is intended to run? Container image signing
helps with these issues as the signature is verified using a configured public
key which can then be verified using the image from someone who
possesses the corresponding private key. In addition, if the image were
modified, the image signature would no longer match the image.
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Each container registry for a container runtime can be configured to either
allow running unsigned images, which is the default, or require that images
be signed. Configuration-wise, requiring that an image be signed is set in
policy.json. Unfortunately, there is no mechanism for configuring the
image signing verification other than manually crafting the policy. json file.
Taking the previous examples in mind, the following two snippets illustrate
how to enable signature verification for registry.redhat.io:

"default": [{"type": "reject"}
1,
"transports": {
"atomic": {
"myregistry.com": [
{"type": "insecureAcceptAnything"}
P
"registry.redhat.io": [
{"type": "insecureAcceptAnything"}
1,
"registry.access.redhat.com": [
{"type": "insecureAcceptAnything"}
(P
"' [{"type": "reject"}]
Y,
"docker": {
"registry.redhat.io": [
{
"type": "signedBy",
"keyType": "GPGKeys",
"keyPath": "/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-

release"
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1,
"myregistry.com": [
{"type": "insecureAcceptAnything"}
[P
"registry.access.redhat.com": [
{"type": "insecureAcceptAnything"}
P

nn .,

[{lltype": Ilre]'ect"}]

The configuration mechanism that expresses the policy is complex. As
shown, policy requirement (the value of the registry scope) is an array. When
multiple policies are specified, all of them must match. The upstream manual
page has a nice example that illustrates how to make sure that imagesin a
registry mirror are signed, at the same time, by both the vendor of the
images and the local authority that approves the images for mirroring :

"default": [
{"type": "reject"}
I
"transports": {
"atomic": (
"hostname:5000/vendor/product": [
{
"type": "signedBy",
"keyType": "GPGKeys",
"keyPath": "/path/to/vendor-pubkey.gpg",
"signedIdentity": {

"type": "exactRepository",

"dockerRepository": vendor-
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hostname/product/repository"
}
3,
{
"type": "signedBy",
"keyType": "GPGKeys",
"keyPath": "/path/to/reviewer-pubkey.gpg"

Enabling FIPS Mode in a Container
To enable FIPS mode in a container running on Red Hat Enterprise Linux:
1. The host system must be switched into FIPS mode.
2. Mount the /etc/system-fips file on the container from the host.
3. Set the FIPS cryptographic policy level in the container:
$ update-crypto-policies —--set FIPS

If using Red Hat Enterprise Linux 8.2 or later, an alternative method for
switching a container to FIPS mode was introduced. It requires only using
the following command in the container:

# mount --bind /usr/share/crypto-policies/back-ends/FIPS \
/etc/crypto-policies/back-ends
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4. Kubernetes Security

Kubernetes is the orchestration layer used to manage deploying container
instances at scale. Kubernetes is used to:

+ Determine which containers should be deployed to which hosts
* Manage shared resources such as network and storage

« Enable containers to discover each other and prevent containers from
discovering each other

« Automatically scale application capacity to meet demand

Kubernetes is a large system with the ability to define policies at multiple
layers of the system. This chapter will discuss how OpenShift secures the
Kubernetes layer, including workloads deployed to the cluster, and provides
recommendations for additional configurations.

OpenShift builds boundaries between user workloads through multi-
tenancy. Multi-tenancy combines Role-Based Access Controls and network
policies with container isolation at multiple levels (host, application, and
service levels). While multi-tenancy separates user workloads, Admission
Controllers form boundaries between the OpenShift APl and components
making requests to the API. Those features, along with operators, help
automate and simplify security management of Kubernetes features.

Security-Focused Kubernetes Operations

High-level OpenShift operations provide ways of automating the otherwise
manual process of setting up, modifying, and upgrading Kubernetes
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components. As a result, security professionals can more easily gain a broad
overview of the health of a cluster while focusing less on the details of
managing each Kubernetes component.

OpenShift Operators play a critical role in both the initial start-up and the
on-going maintenance of those components. Specific operators are
charged with performing upgrades for each node, as well as on particular
low-level Kubernetes components. A range of health-check features in
OpenShift lets you monitor and log events at both node and application
levels while telemetry gathers data that lets Red Hat improve the health of
your OpenShift clusters.

The Use of Operators

Although Kubernetes excels at managing applications, it does not specify or
manage platform-level requirements or deployment processes. Neither
does it include all the elements necessary for an enterprise platform, such as
monitoring and logging. Powerful and flexible platform management tools
and processes are important benefits provided by the OpenShift Container
Platform.

OpenShift uses operators to manage the Kubernetes cluster components.
Each operator manages a specific area of cluster functionality, such as
cluster-wide application logging, management of the Kubernetes control
plane, or the machine provisioning system.

Each operator provides a simple API for determining cluster functionality.
OpenShift operators deploy platform components in the preferred,
supported configuration.

An operator is a method of packaging, deploying, and managing a
Kubernetes-native application. A Kubernetes-native application is an
application that is both deployed on Kubernetes and managed using the
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Kubernetes APIs with the kubectl tooling. Operators create application-
specific custom controllers which allow the platform to use Kubernetes to
manage Kubernetes.

OpenShift ensures that the platform components are deployed and
managed as declared by the operator. When configuration changes are
supported those changes are made through the operator for the individual
component. If an unsupported configuration change is made, the operator
will reset the component back to the supported configuration (leveraging
the declarative nature of Kubernetes). This allows operators to manage
configuration drift. If an unsupported configuration change is made, the
operator will reset to the supported configuration.

Cluster Upgrades

The cluster manages upgrades to the machines through the Cluster Version
Operator, the Machine Config Operator, and a set of individual

operators. The scope also includes updates and upgrades to the host
operating system.

Updates to OpenShift are managed by the cluster administrator. Patches
are delivered through the same mechanism. The Machine Config Operator
updates nodes in a rolling fashion, with zero cluster downtime for well
behaving applications, making it easier to keep the cluster up to date with
the latest fixes. All platform operators watch for drift and reset any
unsupported configuration changes.

Cluster Incident and Event Management

The health and availability of a cluster is part of its security posture.
OpenShift includes a variety of capabilities to automatically evaluate and
manage cluster health.
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Machine Health Checks

Cluster administrators can configure and deploy a machine health check to
automatically repair damaged machines (worker nodes). This process is not
applicable to clusters where machines are manually provisioned. Advanced
machine management and scaling capabilities can only be used in clusters
where the machine APl is operational. The controller that observes a
MachineHealthCheck resource checks for the status that has been defined.

If a machine fails the health check, it is automatically deleted and a new one
is created to take its place. When a machine is deleted, you see a machine
deleted event. To limit disruptive impact of the machine deletion, the
controller drains and deletes only one node at a time. If the number of
unhealthy machines exceeds the maxUnhealthy threshold in the targeted
pool of machines, remediation stops so that manual intervention can take
place. For more information see https://docs.openshift.com/container-
platform/4.3/machine_management/deploying-machine-health-
checks.html

Cluster Monitoring

Cluster monitoring services are deployed to all nodes. OpenShift Container
Platform includes a preconfigured, preinstalled, and self-updating
monitoring stack that is based on the Prometheus open source project. It
provides monitoring of cluster services and includes a set of alerts to
immediately notify the cluster administrator about any occurring problems
through a set of Grafana dashboards. The cluster monitoring stack is only
supported for monitoring and metrics gathering of OpenShift Container
Platform clusters.
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Cluster Logging

When the cluster logging operator is installed, logging services are deployed
to all nodes. OpenShift includes the option to deploy a logging operator.
The cluster logging services are based upon Elasticsearch, Fluentd, and
Kibana (EFK). The collector, Fluentd, is deployed to each node in the
OpenShift Container Platform cluster. It collects all node and container logs
and writes them to Elasticsearch (ES). Kibana is the centralized, web Ul
where users and administrators can create rich visualizations and
dashboards with the aggregated data for log analysis. For more information,
see Cluster Logging in the OpenShift documentation.

Audit

OpenShift event auditing and host auditing services are deployed to all
nodes. As an API driven system, OpenShift audits cluster events by default.
Events allow the OpenShift Container Platform to record information about
real-world events in a resource-agnostic manner. They also allow developers
and administrators to consume information about system services in a
unified way.

Project audit data is available to project administrators and cluster audit
data is available to cluster administrators. OpenShift platform services
connect to the built-in monitoring solution in OpenShift. An alert dashboard
is available. Best practice is to configure your cluster to forward all audit and
log events to a Security Information and Event Management (SIEM) system
for retention and analysis. Additional information about auditing is available
in Chapter 7 : Auditing. For a list of events, see the List of

events documentation.
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Remote Telemetry and Health Monitoring

In a connected cluster, telemetry services are deployed to all nodes. The
OpenShift Container Platform collects anonymized aggregated information
about the health, usage, and size of clusters and reports it to Red Hat via
two integrated components : Telemetry and the Insights Operator. This
information allows Red Hat to improve the OpenShift Container Platform
and to react to issues that impact customers more quickly. This also
simplifies the subscription and entitlement process for Red Hat customers
and enables the Red Hat OpenShift Cluster Manager service to provide an
overview of your clusters and their health and subscription status. A cluster
that reports data to Red Hat via Telemetry and the Insights Operator is
considered a connected cluster.

This continuous stream of data is used by Red Hat to monitor the health of
clusters in real time and to react as necessary to problems that impact our
customers. It also allows Red Hat to roll out the OpenShift Container
Platform upgrades to customers to minimize service impact and
continuously improve the upgrade experience. This debugging information is
available to Red Hat Support and engineering teams with the same
restrictions as accessing data reported via support cases. All connected
cluster information is used by Red Hat to help make OpenShift Container
Platform better and more intuitive to use. None of the information is shared
with third parties.

The Telemetry and the Insights operator can be disabled. For more
information see About Remote Health Monitoring.
Securing Platform Services

Described below are the individual Kubernetes platform services that need
to be managed by OpenShift.
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Access to the Cluster

For users to interact with the OpenShift Container Platform, they must first
authenticate to the cluster. OpenShift includes an integrated OAuth server
for token-based authentication. The authentication layer identifies the user
or service associated with requests to the OpenShift Container Platform
API. The authorization layer then uses information about the requesting user
or service to determine if the request is allowed. Detailed information about
authentication and authorization can be found in Chapter 5: Identity and
Access Management Security.

Internal connections to the APl server are authenticated by X.509
certificates. External access to the API server is managed by the ingress
controller. Best practice is to separate access to the APl server from access
to workloads running on the cluster. This can be achieved by configuring
separate ingress controllers for each type of access.

Control Plane

The control plane is composed of master nodes. OpenShift services, such as
the API Server, etcd, Controller, Scheduler, etc., run only on these master
nodes. These control plane services manage workloads on the compute
nodes, which are also known as worker nodes. A default OpenShift 4 cluster
must include three master nodes to ensure that a quorum for etcd is
maintained.

Most of the control plane components are deployed as static pods. Static
pods are managed by the kubelet and are always bound to one kubelet on a
specific node. The kubelet automatically creates a mirror Pod on the API
server for each static pod. This means that the pods running on a node are
visible on the APl server but cannot be controlled from there which
minimizes the attack surface. Security secrets for control plane components
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such as the Kubernetes apiserver, etcd, the controller manager, and the
scheduler are stored with their respective static pod configurations in the
/etc/kubernetes/static-pod-resources/*/secrets directory on its host.
Secrets for the control plane components are automatically managed and
rotated by OpenShift.

APl Server

The OpenShift API server is managed by the apiserver operator. The API
server is served over HTTPS with authentication and authorization, and the
secure APl endpoint is bound to 0.0.0.0 :6443. The APl server cannot be
configured to listen on any other port. If needed, you can configure the load
balancer in front of the API to listen on any custom port and redirect
requests to the expected port 6443.

The default APl server uses the certificate from the Ingress Controller.
Clients outside of the cluster will not be able to verify the API server’s
certificate by default. This certificate can be replaced by one that is issued
by a CA that clients trust. When deployed in a public cloud, the API server
can and should be configured to only be accessed from a private zone.

OAuth Server

OpenShift includes an embedded OAuth server for authentication and
Role-Based Access Control (RBAC) for authorization. Additional information
about how OpenShift manages authentication and authorization is available
in Chapter 5: Identity and Access Management Security.

etcd

etcd stores the persistent master state while other components watch etcd
for changes to bring themselves into the specified state. etcd also stores

138



kubernetes secrets. Given its importance to the functioning of the cluster,
security for the etcd datastore is built into OpenShift.

The cluster etcd is managed by the cluster etcd operator. etcd is
automatically deployed on each of the 3 master nodes. Its pod specification
file is created on control plane nodes at /etc/kubernetes/manifests/etcd-
member.yaml. The kubeconfig file for system:admin (admin.conf) is stored in
/etc/kubernetes/kubeconfig.

OpenShift uses X.509 certificates to provide secure communication to etcd.
OpenShift configures these automatically. OpenShift does not use the
etcd-certfile or etcd-keyfile flags.

OpenShift supports data at rest encryption of the etcd datastore but itis up
to the customer to configure. The AES-CBC (Cipher Block Chaining) cipher
is used with the keys stored and automatically rotated on the filesystem of
the master. Encryption of the etcd datastore can be enabled post-
installation against a running system. For more information on etcd
encryption please see the section in Chapter 8 entitled Etcd Datastore
Encryption.

Scheduler

Pod scheduling is an internal process that determines placement of new
pods onto nodes within the cluster. The scheduler watches new pods as they
get created and identifies the most suitable node to host them. It then
creates bindings (pod to node bindings) for the pods using the master API.
The default scheduling behavior is managed with the OpenShift kube-
scheduler-operator.

Cluster administrators may wish to influence the behavior of the scheduler in
order to simplify auditing of regulatory requirements. For example, if an
organization's policy requires that applications with certain types of sensitive
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data only be deployed to specific physical nodes. This can be done by
making use of the following advanced pod scheduling methods. Each one
addresses a different use case so it's important to understand what behavior
is desired. Important to note is that a combination of methods may be
required in order to achieve the desired outcome.

Note : The scheduling operator’s default behavior can be changed by
creating or editing the scheduler policy ConfigMap in the openshift-config
project. However, it is not recommended. The techniques listed below are
preferred.

Node Selectors

Node selectors are used when there are specific resources that must be
scheduled on specific nodes.

With node selectors, a label is applied to the node and all services that need
to be scheduled on those nodes need to be configured with the
corresponding node selector. Node selectors can be configured on a cluster
level, project level or pod level for desired granularity.

If a node selector is specified in conjunction with a resource and there are no
available nodes with that selector label, those resources will not be
schedulable. On the contrary, if a node selector is not specified within a
resource, those resources can still be scheduled on the nodes with a selector
label.

Taints and Tolerations

Taints and tolerations are used when the desired outcome is to prevent
resources from being scheduled on specific nodes by default unless
otherwise necessary. When a taint is applied to a node, all resources will be
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repelled from that node unless it is configured with a toleration that allows it
to be scheduled there.

Controller Manager

The Controller Manager Server watches etcd for changes to objects such as
replication, namespace, and service account controller objects, and then
uses the API to enforce the specified state. The kube-controller-manager is
managed with the cluster Controller Manager Operator. In other words, the
controller manager, in combination with the other cluster operators ensures
that the declared state for objects in the cluster is maintained.

Ingress Controller

The Ingress Controller and wild card DNS are managed with the ingress
operator. An Ingress Controller is configured to accept external requests and
proxy them based on the configured routes. This is limited to HTTP, HTTPS
using SNI, and TLS using SNI, which is enough for web applications and
services that work over TLS with SNI. By default, the OpenShift Container
Platform uses the Ingress Operator to create an internal CA and issue a
wildcard certificate that is valid for applications under the .apps sub-
domain. The default ingress certificate can be replaced. After replacing the
certificate, all applications, including the web console and CLI, will have
encryption provided by a specified certificate. See the Replacing default
ingress certificate documentation. More information about the Ingress
Operator can be found in Chapter 6: Network Security.

Console

The OpenShift Container Platform web console is a user interface
accessible from a web browser. Administrators can use the web console to
manage and monitor the status of the cluster. Developers can use the web

141


http://localhost:9000/https%E2%80%89://docs.openshift.com/container-platform/4.3/authentication/certificates/replacing-default-ingress-certificate.html%23replacing-default-ingress_replacing-default-ingress

console to visualize, browse, and manage the contents of projects. You can
modify the OpenShift Container Platform web console to set a logout
redirect URL or disable the console.

Recommendation : Specify the URL of the page to load when a user logs
out of the web console. Specifying a logoutRedirect URL allows users to
perform a single logout (SLO) through the identity provider to destroy their
single sign-on session. See https://docs.openshift.com/container-
platform/4.3/web_console/configuring-web-console.html

Instructions on disabling the web console is available here:
https://docs.openshift.com/container-platform/4.3/web_console/disabling-
web-console.html

Kubelet

The kubelet runs on each node in the cluster and registers each node with
the APl server. The kubelet is installed as part of RHEL CoreOS and runs as
a systemd service. OpenShift automatically generates and rotates the
certificates for the kubelet to serve HTTPS traffic.

CRI-O Container Runtime

OpenShift uses CRI-O as the container runtime. CRI-O is run as a systemd
service on each node in the cluster and is installed as part of RHEL CoreOS.
CRI-O is a lightweight, Kubernetes-specific runtime with a reduced attack
surface. CRI-O is versioned with Kubernetes. More information about CRI-O
is available in Chapter 3 : Container Security.
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Multi-tenancy

OpenShift enables multi-tenancy in a single cluster through the use of
container isolation at the host level, application, and service isolation via
OpenShift projects, in combination with Role-Based Access Control (RBAC)
and network policies. Container multi-tenancy and RBAC are described in
detail in Chapter 5: Identity and Access Management Security. Network
policies are described in Chapter 6: Network Security. This discussion of
multi-tenancy will focus on the use of OpenShift projects.

Projects and Kubernetes Namespaces

OpenShift Projects are Kubernetes namespaces with additional

annotations such as Multi- Category Security (MCS) labeling provided in
SELinux. OpenShift projects allow a group of users to organize and manage
their cluster resources (objects, policies, constraints, and service accounts)
in isolation from other groups or cluster resources. Each project scopes its
own set of objects, policies, constraints, and service accounts. OpenShift
projects are the central vehicle by which access to resources for regular
users is managed. Unlike upstream Kubernetes, the OpenShift projects
(Kubernetes namespaces) are configured and deployed by default to enable
multi-tenancy.
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Figure 4.1: OpenShift Project/Namespace Isolation

Users or groups can be given access to projects by cluster administrators or
project administrators but may also be delegated to create their own
projects. Users or groups are only allowed to see the content in the projects
to which they are assigned and are given specific roles within projects. These
roles are referred to as local role bindings and determine what actions are
allowed within those projects. Figure 4.2 illustrates the relationship between
projects and local role binding.
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Figure 4.2: Role-Based Access Control (RBAC) within OpenShift Projects

Communication between pods in a project or between pods in separate
projects is managed through network policies. Network policies are
discussed in detail in the Network Security chapter.

Project Quotas

A resource quota, defined by a ResourceQuota object, provides constraints
that limit aggregate resource consumption per project. It can limit the
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quantity of objects that can be created in a project by type, as well as the
total amount of compute resources and storage that may be consumed by
resources in that project. Cluster administrators can set and manage
resource quotas on a per project basis, and developers and cluster
administrators can view them. For more information see the Quota setting
per project documentation.

Cluster administrators can also manage resource quotas across multiple
projects with a multi-project quota. Resources used in each selected project
are aggregated and that aggregate is used to limit resources across all the
selected projects. For more information see the Quota setting across
multiple projects documentation.

Admission Controllers

Admission Controllers form a layer between the OpenShift APl and any
request made to the API. Admission controllers can validate or mutate
objects on admission, providing additional options to secure the cluster.

Learning how admissions controllers are set up, by default, in OpenShift
helps to understand the security implications and controls placed on
Kubernetes components. Security Context Constraints and Service
Accounts define these limitations. Other constraints answer such questions
as “when should a new version of an image be pulled when a local version is
available” and “how are kubelets limited in the pods and nodes they can
modify.”

Security Context Constraints

The Security Context Constraints (SCCs) admission controller is used to
restrict pod access in a similar way to restricting user access with RBAC. Pod
SCCs are determined by the group that the user belongs to as well as the
service account if one is specified. SCCs are enabled by default in
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OpenShift and cannot be turned off. SCCs allow administrators to control
many pod configurations including:

¢ The SELinux context of the container

* Whether a pod can run privileged containers

« The use of host directories as volumes
OpenShift SCCs support the same level of controls as Pod Security Policies
(PSPs). While PSPs have the concept of ordering policies, it is not yet as

complete as SCCs prioritization feature. Red Hat continues to work with the
Kubernetes community on Pod Security Policies.

When a request is placed, admission will use the following approach:
* Retrieves all available SCCs
« Generates field values for all undefined SCC settings

+ Validates against the available constraints

If a matching set is found, the pod is accepted. Otherwise, it is rejected.

SCC's priority field affects the ordering when attempting to validate a
request by the admission controller. A higher priority SCC is moved to the
front of the set when sorting. When the complete set of available SCCs are
determined, they are ordered by :

« Highest priority first, nil is considered a 0 priority
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« |f priorities are equal, the SCCs will be sorted from most restrictive to
least restrictive

« If both priorities and restrictions are equal, the SCCs will be sorted by
name

By default, worker nodes and pods that run on worker nodes receive an SCC
type of restricted. The restricted SCC ensures pods cannot run as privileged
and must run as a user in a preallocated range of UIDs. It requires a pod to
run with a preallocated MCS label. It also ensures that pods cannot mount
host directory volumes and that the pod cannot connect directly to the
host’s network.

There are eight default SCCs in OpenShift, and they should not be modified.
Modifying the default SCCs are not covered in our test matrices and will
break upgrades. Instead of modifying the default SCCs, create a custom
SCC. SCC management requires the role of cluster-admin. To view a list of
SCCs:

$ oc get scc

NAME AGE
anyuid 3h51m
hostaccess 3h51m

hostmount-anyuid 3h51m

hostnetwork 3h51m
node-exporter 3h50m
nonroot 3h51m
privileged 3h51m
restricted 3h51m
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More information about a specific SCC can be viewed by :

S oc describe scc <scc-name>

See Creating Security Context Constraints to see a procedure for creating a
security context constraint from the command line.

There are several SCCs that trigger the admission controller to look for
preallocated values from a namespace when no ranges are defined in the
pod specs. More information about the preallocated SCC values can be
found in About preallocated Security Context Constraints values in the
OpenShift documentation.

Service Account

The goal of the Service Account admission controller is to implement the
automation of service account management. In OpenShift, Service
Accounts (SA) allow a service to directly access the API. Service accounts
can be granted roles just as a regular user. Since the use of service accounts
is required in each project to run builds, deployments, and other pods, three
default service accounts are automatically created for each project.

The SA name is derived from the project, and its access is isolated and
restricted to its project namespace. It is not recommended to remove the
SAs created by default, even if there will not be any builds in that project, as
cluster behavior cannot be guaranteed. Since SAs are scoped to the project
level, removing them is not necessary.
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As soon as a service account is created, two secrets are automatically added
toit:

* An API token

« Credentials for the OpenShift Container Registry

The system ensures that service accounts always have an API token and
registry credentials. The ServiceAccount token authenticator is configured
with serviceAccountConfig.publicKeyFiles. OpenShift automates key
rotation for platform components. By default, the ServiceAccount controller
is enabled and cannot be turned off.

AlwaysPulllmages

The goal of the AlwaysPulllmages controller is to require pods to always pull
images from the registry (requiring authentication) as opposed to pulling
images from local cache if available.

In OpenShift, the default configuration is to set the imagePullPolicy to
always when the tag is latest. Otherwise, the imagePullPolicy is set to
IfNotPresent.

Always pulling images ensures that users are not using locally cached images
and are using updated and authenticated images before a pod is started.
NamespaceLifecycle

The goal of the NamespaceLifecycle controller is to prevent the creation of
resources in a namespace that is in a terminating state. It also protects the
default, kube-system and kube-public namespaces by blocking their
deletion. This controller is enabled by default in OpenShift and should not
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be disabled, as it protects the integrity of the namespace termination
process.

NodeRestriction

This limits the number of Node and Pod objects a kubelet can modify.
Enabling the NodeRestriction controller ensures that kubelets only be
allowed to modify their own Node APl objects and the Pod API objects that
are deployed to their node. This controller is enabled by default in OpenShift
and cannot be changed.

AlwaysAdmit

If enabled, the alwaysAdmit admission controller allows all pods in the
cluster. This controller is disabled by default in OpenShift and cannot be
enabled. It has also been deprecated by the Kubernetes community as it
behaves as if there were no controller.

EventRateLimit

The goal of the EventRateLimit controller is to limit the rate at which the API
server accepts requests. Some organizations recommended this controller
to alleviate the potential issue of flooding the APl server with requests.
However, the kubelet has since been fixed to send fewer events. Therefore,
this controller cannot be enabled in OpenShift 4.

In future Kubernetes releases, API priority and fairness (which is alpha in
Kubernetes 1.18) will be used to limit the rate at which the API server accepts
requests.
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5. Identity and Access
Management Security

The concept of identity is used to uniquely identify an actor in an OpenShift
cluster. It defines who the actor is. |dentity is represented as a user but, from
a security standpoint, there are different types of users defined at different
levels to take into consideration.

The actions a user is allowed to perform in the cluster depends on their
unique identification determined via methods such as role-based access
control (RBAC). An identity can also be used to audit what actions a
user performed at some point in the past.

To help manage and secure users at different levels of an OpenShift cluster,
this chapter differentiates between user accounts typically associated with a
person (regular user accounts) and those used primarily for infrastructure
and non-interactive workloads (system accounts, service accounts, and
virtual system users). Security-related identity and access management
concerns focus on how users are authenticated and how privileges
associated with each account are assigned and managed.

Types of users

When it comes to direct use and management of an OpenShift cluster, there
are regular users (who typically run workloads and may do some
administration) and system users (who can interact with the API). The
kubeadmin user is the first user created on an OpenShift cluster and
requires special attention since it holds superuser privileges. User accounts
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that function behind the scenes include service accounts and virtual system
users.

Regular Users

A user most commonly represents a real person who interacts with the
OpenShift cluster in some way. Since management of OpenShift is
performed via the OpenShift API itself, this includes both administrators of
the cluster as well as regular users of the cluster who use it to run their
workloads.

System Users

At times, individual infrastructure services and components need to interact
with the OpenShift API. System users are used to identify these
components which allows their permissions to be defined via policy.

Service Accounts

Service accounts are specialized user objects that are intended for
infrastructure and other non-interactive workloads, and cannot be managed
externally. Every OpenShift project contains a default set of service
accounts, and it is possible to create new service accounts as needed.

Any pod running with a service account automatically gets a secret for its
service account mounted

under /var/run/secrets/kubernetes.io/serviceaccount/token. |f the
serviceAccount field of podSpec is not specified then the default project
service account is used.

This secret can be used from inside of the pod as an access token to
authenticate the API. OpenShift Roles and ClusterRoles can be bound to a
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service account in the same way as a normal user, thus defining the
authorization policy of the workload. Service accounts also need
permissions to use certain SCCs which can influence the security settings of
a pod.

Virtual System Users

In some special cases, OpenShift uses virtual system users. These users are
not backed by a real identity from an identity provider (IdP) or OpenShift
object. Virtual system users are hard-coded and reserved for infrastructure
component use. They appear with a system: prefix (such as system:admin,
system:node: foo ). Many of these virtual users are defined in the subject
fields of X.509 client certificates in use by control plane components to
uniquely identify the component.

Anonymous User

Anonymous users are represented by the virtual system user
system:anonymous. This user is added to the request by the Kubernetes
authentication layer for requests that have failed authentication or did not
provide any authentication credentials. This is intended mostly to identify a
failed request to the rest of the API layers and does not grant any access.
See also the Virtual Groups section of this chapter.

Kubeadmin and other Superuser Account

When an OpenShift cluster is first installed, a special kubeadmin user is
provided to bootstrap the initial cluster configuration. This user is all-
powerful and should be thought of as a root user for the cluster.

From a security perspective, kubeadmin should only be used to configure an
identity provider and grant the cluster-admin role to at least one regular
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user. Using kubeadmin to interact with the cluster beyond this post-
installation bootstrapping is bad practice, as it can make it difficult or
impossible to determine who performed specific actions, particularly when
the user is shared by multiple people.

Disabling the kubeadmin user after a new administrator is configured is
strongly recommended. Note that this is an irreversible operation! It is highly
recommended that the new administrator is tested first to be sure it is
working properly. Disable the kubeadmin user by deleting the

kubeadmin secret while logged in as a user with the cluster-admin role as
follows :

S oc delete secrets kubeadmin -n kube-system

Emergency Access

As part of the OpenShift installation process, the installer provides a
kubeconfig file that is designed to be used for backup or emergency admin
access. This is useful in situations where login to the cluster via an identity
provider is not working properly as authenticating with the kubeconfig does
not require OAuth to authenticate.

The kubeconfig contains a client certificate and private key that provides
superuser access to the cluster. As such, it is very important to carefully
protect the kubeconfig immediately after cluster installation by storing itin a
secure offline location or as read-only in an online encrypted location that
meets security requirements.

The default location for the kubeconfigis <installation-
directory>/auth/kubeconfig. Authenticating to the cluster with the
kubeconfig token can be done by :
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« Passing the file as a flag when running oc commands::

I $ oc —-config=<path>/<to>/kubeconfig

« Or exporting it to the current shell session

I $ export KUBECONFIG=<path>/kubeconfig

Once access has been restored to the cluster, place the
kubeadmin kubeconfig file back into protected storage.

User Provisioning

In most cases, the people who will be interacting with a cluster already have
user accounts defined centrally in a system of record such as an LDAP
server. It is desirable (and often required per security policy) to have all
authentication and user management handled in the centralized system of
record.

While OpenShift Container Platform has user objects, they are not intended
to be used as a primary identity source. User objects should be thought of
as profiles used for assigning authorization and representing a user of the
APl within the platform.

For regular users, OpenShift provides a variety of external integration
options via identity providers in the built-in OAuth server. Configuring an
identity provider is the first thing to do after deploying a cluster, as
OpenShift only provides a privileged kubeadmin user at install time. It is
highly recommended to configure an external identity provider and remove
the kubeadmin user after granting the cluster-admin role to a real user from
that identity provider.
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When choosing an identity provider, it is important to consider the identity-
related security requirements with regards to:

» Authentication method strength
« Password policies

* Account controls (lockout, etc.)

By default, OpenShift automatically provisions a user object for a user when
they log in for the first time via an identity provider. It is possible to change
this behavior by configuring the mapping method for your identity provider.
For example, the lookup mapping method can be used to require users to
be manually provisioned in OpenShift before they will be allowed to log in.
This setting is useful when successful authentication to the identity provider
should not automatically confer access to OpenShift cluster resources.

Groups

Groups are a convenient construct provided to logically aggregated
identities for the purposes of managing permissions in a maintainable way.
Managing cluster permissions will be described in more detail in the
Authorization section of this chapter, but it is important to understand what
is possible with group management in OpenShift.

OpenShift provides the ability to define groups locally within the cluster.
This can be a good place to define cluster-specific groups. Membership is
managed via the oc CLI or the Console.
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LDAP Group Synchronization

OpenShift also provides the ability to synchronize external groups from an
LDAP server, dynamically provisioning them into OpenShift. Using LDAP
groups allows access to OpenShift cluster resources to be managed from
updates made directly to the LDAP server which is commonly used to
centrally control access to applications and systems within an enterprise.
Configuring LDAP group synchronization is a complex topic, as the exact
configuration varies depending on the LDAP Deployment. See the official
OpenShift documentation for details on how to configure LDAP
synchronization for the environment.

Note that synchronizing groups from LDAP does not require an LDAP server
to be used as the identity provider in OpenShift. This allows the parallel use
of an identity provider that provides stronger authentication than the
password-based authentication that the LDAP provider provides while still
using groups from LDAP for authorization.

Both local groups and LDAP groups can be mixed together allowing the
most common cluster access to be managed via LDAP and locally defined
cluster-specific groups defined in OpenShift to augment access granted via
LDAP groups. This is useful when the administration of LDAP groups is
handled by a different group of people than the administration of the
OpenShift cluster.

If the environment uses an LDAP server, it is most likely used for more than
just accessing the OpenShift cluster. It is possible to synchronize only a
subset of groups from LDAP to OpenShift. From a security perspective, it is
ideal to only synchronize groups that are to be used for controlling access to
the cluster. This can be achieved in the LDAP sync configuration by setting
the LDAP search baseDN and filter to restrict the entries found, as well

as using whitelist and blacklist files to define exceptions.
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When synchronizing groups from LDAP, it is important to know that the
removal of groups in LDAP will not, by default, remove the associated group
from OpenShift. The process of pruning groups is performed separately
from the normal synchronization process by using the oc adm prune groups
command. Ensure regular pruning of groups if LDAP groups are to be
deleted as a method of removing access to the OpenShift cluster.

When synchronizing groups from LDAP, it is up to the cluster administrator
to determine how often to perform the synchronization. From a security
standpoint, it is important to consider how quickly authorization changes are
to take effect when group membership changes. OpenShift will not know
about changes to LDAP group membership until synchronization is run.

Virtual Groups

OpenShift Container Platform also provides for virtual groups used for
authorization purposes. The most common of these are the
system:authenticated and system:unauthenticated groups. Virtual groups
are managed automatically by OpenShift.

Cluster Node Users

We have not mentioned users at the cluster node level. This is intentional, as
regular management of the underlying RHCOS cluster nodes is designed to
be performed via the OpenShift APl itself. The only users that exist on an
RHCOS OpenShift node are root and core. The core user is a member of the
wheel group, which gives it permission to use sudo for running privileged
commands. Adding additional users at the node level is highly discouraged.
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Direct Access via oc debug

Direct node access is only intended to be used for troubleshooting and
emergency purposes. By default, the only way to access a shell on a node in
an OpenShift cluster is via the oc debug node/<node>CLI command. It is
important to note that this provides a shell logged in as root on the node.
This is only available to users with the cluster-admin role whose use should
be limited as much as possible. Note that auditing the actions taken on a
node via oc debug node will require audit logging to be configured.
Additionally, logs from the cluster will need to be correlated to determine
which real user performed the actions on the node. The audit logs on the
node will only indicate that actions were performed by the root user. See
Chapter 7 : Auditing for more details.

Direct Access via SSH

Though discouraged, SSH access to the nodes can be enabled to allow for
emergency access and debugging. The RHCOS nodes are running sshd with
root login disabled by default. To allow SSH access, MachineConfigs can be
used to add SSH public keys to the core

user's authorized_key configuration.

Using separate SSH keys per administrator is recommended, as it allows for
auditing of the session which can be tied back to the specific SSH key used
to authenticate. To do this, modify the existing MachineConfigs on the
cluster. First, get a copy of MachineConfig for the node type to be updated:

$ oc get machineconfigs | grep ssh
99-master-ssh

2.2.0 2d18h
99-worker-ssh

2.2.0 2d18h



$ oc get machineconfigs 99-worker-ssh -oyaml > add-ssh-key-
worker.yaml

Modify the MachineConfig yaml file to add additional SSH public keys after
as desired:

apiVersion: machineconfiguration.openshift.io/v1l
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: 99-worker-ssh
spec:
config:
ignition:
version: 2.2.0
passwd:
users:
- name: core
sshAuthorizedKeys:
- |
ssh-rsa ..
- |

ssh-rsa ..

Apply the updated MachineConfig yaml file, and the Machine Config
Operator will apply the configuration and reboot the nodes:

S oc apply -f add-ssh-key-worker.yaml
machineconfig.machineconfiguration.openshift.io/99-worker-ssh
confiqured

If SSH is used to access one of the RHCOS nodes, the node will be
annotated by the MachineConfigDaemon to flag that it has been accessed.
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This can be monitored to detect if any nodes are accessed via SSH. The
following annotation will be seen when running oc describe for a node that
has been accessed via SSH :

machineconfiquration.openshift.io/ssh=accessed

Additionally, a good practice is to use bastion hosts when access to the
RHCOS nodes via SSH is needed. The bastion hosts can be configured to
meet more stringent authentication and auditing requirements.

If necessary, it is also possible to configure the System Security Services
Daemon (SSSD) on the RHCOS nodes via a MachineConfig to allow a
centralized identity source such as an LDAP server to be used. See Chapter
2: Red Hat Enterprise Linux CoreOS Security for more details on the
security considerations related to direct node access.

Authentication Overview

Authentication refers to the process that OpenShift performs upon
receiving an APl request in order to verify that the requestor (user) is who
they claim to be. A request typically includes a user signed token or other
identifying credentials that are validated by the API server's authentication
layer. If the user's authentication attempt succeeds, the API server modifies
the request to include the user's information and passes it along to the
authorization layer.

In Kubernetes, the default is simple X.509 certificate verification, token files,
and user passwords. To augment the default authentication, you can
configure an identity provider via an OAuth server.
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Kubernetes Authentication Layer

The Kubernetes authentication layer involves a stack of authentication
methods. Individual authentication methods can offer differing degrees of
trust verification (such as a password in a file versus a cryptographically
signed token). The authenticators provided by Kubernetes out-of-the-box
are the simple cases (X.509 certificate verification, token file). Integrating
other authentication methods usually involves more complicated
configuration. To address this, by default, OpenShift includes an integrated
OAuth server.

The OAuth protocol provides a flexible framework for authenticating users
against different external identity providers. The end result of a successful
authentication is an access or bearer token that can be used for a period of
time to subsequently authenticate the APl without the need to provide the
initial authentication credentials again.

Request S Request s
info e Authentication —0—) info _— Audit

User: Fred
ID: xxx
Groups: foo
Extra:

Request REST (—o— Authorization
info resource

User: system:anonymous 5 é
n)

Figure 5.1 shows the layers that a request moves through inside of the API
server. Note that the Authentication layer is concerned with verifying access
tokens directly, and does not handle the actual user login process. Instead,
the APl server redirects an unauthenticated request to the internal OAuth

164



server, where the actual login process begins. We will outline this process in
more detail below.
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Figure 5.2: Browser-based OAuth Login Flow
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Figure 5.2 shows an example of the OAuth flow on OpenShift when logging
in using a web browser. The flow is controlled by a series of redirects and
moves in a few general stages::

+ Initial requests to the API by unauthenticated users are redirected to
the OAuth server

« The OAuth server redirects the browser to the identity provider to
authenticate. Typically, the browser is directed to a login prompt where
user credentials are provided. At this stage, the browser interacts
independently with the identity provider, and advanced authentication
methods (such as 2-factor authentication) can take place according to
what is configured and supported by the identity provider.

« Once authenticated to the identity provider, the browser follows a series
of redirects in order to exchange an OAuth authorization code for a
signed and encrypted browser cookie and access token. The use of a
cookie allows a browser session to request new access tokens without
requiring a user lookup from the identity provider each time.

The flow shown in Figure 5.2 can vary slightly depending on the IDP and
user-agent capabilities. For example, while the illustrated flow would redirect
to a GitHub identity provider login page, an LDAP identity provider would
redirect to a custom login page served by the OAuth server. The

oc command provides another variant, where the OAuth server serves a
WWW-Authenticate challenge in exchange for an authorization code.

The OpenShift OAuth server supports both the standard authorization

code and implicit grant types. For typical client usage of OpenShift, such as

console and oc logins, the grant type is selected automatically (as well as the
client_id and other required fields) to form the proper OAuth requests and
follow redirects as needed. If the requests are manually formed (through
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curl, etc.), see the following documentation links for more information on the
required request fields and endpoints:

« Understanding Authentication

« Configuring the Internal OAuth Server

A Note about Identity Provider Users and Authentication

The verification of the user credentials (authentication via an identity
provider, mapping of the identity provider user, and so on) happens during
the early OAuth process and not during the APl server's validation of the
access token. As a result, user management actions on the identity provider
(such as deleting a user or adding a group) will not impact or invalidate an
active bearer token from a previous authentication (see below about token
lifetime).

Consider how soon authorization-related changes are required to be made
to an identity provider to take effect in the OpenShift cluster when
configuring the token lifetime. Future improvements to OpenShift, such as
Keycloak integration, will allow more control over bearer token policy.

Authentication Methods

There are various ways to manage authentication tokens that can change
the tokens lifetime or get rid of the token altogether. Tokens can also be
delegated from one user to another.

OAuth Access Tokens

An access token (opaque to the client) is the result of a successful
authentication. The access token is used in the HTTPS request to the APl as

an Authorization: Bearer <xx> header.
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Access Token Lifetime

By default, the access token lifetime is 24 hours. This can be configured
using the steps described in configuring the internal OAuth server’s token
duration. The decision to shorten or lengthen the token lifetime will depend
on the use case. Shorter tokens will require more frequent authentication
attempts, providing a possible hit in performance, but can decrease the
impact of a leaked token.

Access Token Revocation

An active access token can be revoked manually by the administrator. To
revoke an active access token, perform the following:

1 Get alist of active tokens in order to identify which token to revoke :

I $ oc get oauthaccesstokens

2 When the token to revoke has been identified, delete the token:

I S oc delete oauthaccesstoken/name

This can be useful if access to the cluster for a specific user needs to be
revoked.

Another way that a token is revoked is by a user manually performing a
logout. For example, having the user run the following command will revoke
access to the cluster using their existing token:

$ oc logout

Always having users logout when they are done working with OpenShift is a
best practice. Unfortunately as of this writing, this is a manual process with
no native way of auto-logging out users due to inactivity.
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Service Account Tokens

Service Account tokens use the JSON Web Token (JWT) format and are
signed using HMAC SHA256 (512-bit key) and encrypted using AES-256
(256-bit key). Service Account tokens never expire and do not refresh on
their own. In order to refresh a Service Account token, delete the secret
referenced in the Service Account:

S oc get sa/default -o jsonpath='{range .secrets[*]}{.name}
{"\n"}{end}'

default-token-6j295

default-dockercfg-rfk45

S oc delete secret/default-token-6j295
secret "default-token-6j295" deleted

After deletion, a new secret will automatically be generated and the Service
Account token updated:

$ oc get sa/default -o jsonpath='{range .secrets[*]}{.name}
{"\n"}{end}'

default-dockercfg-rfk45

default-token-4n4pc

X.509 Certificate

OpenShift utilizes the Kubernetes built-in X.509 certificate authenticator
for authentication of the cluster-admin user as well as control-plane
components. The cluster-admin kubeconfig that is generated at install time
contains a private key and certificate that is signed by an internal certificate
authority (CA). OpenShift configures the API server to use this CA to
validate the user certificate sent during TLS negotiation. If the CA validation
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of the certificate is successful, the request is authenticated and user
information is derived from the certificate subject fields.

Since the OpenShift internal CA is not exposed beyond the cluster,
attempting to use client certificates to authenticate normal users through
the APl is not recommended. An external CA would require signing and
creating certificates out-of-band and would lose the ability to revoke the
user'’s certificate. It is not currently possible to replace the CA that the API
trusts for this purpose.

Token Delegation

There is a form of token delegation that offers the ability to delegate a
subset of permissions to another user by generating a token with scopes.
See skoping tokens for details on how to offer a subset of permissions from
one user to another.

This feature has limited use for most workloads since the ability to create
scoped tokens is restricted to the cluster-admin user. If used, token
delegation should be used with care as it is possible to give a token scoped
to a role with privileged access which in turn would provide escalating access
to a cluster resource or the entire cluster.

Integrating with External Identity Providers

OpenShift supports a variety of OAuth identity providers, each providing a
different degree of assured trust. The choice of identity provider depends
on factors such as what is available in the environment and the desired level
of security. See the OpenShift documentation for a full list of supported
identity providers.

Where possible, choose to use an OAuth or OIDC-based identity provider
(GitLab, OIDC) over the HTPasswd, LDAP or BasicAuthentication, as they
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provide stronger authentication methods.

Alternatively, the RequestHeader identity provider can be used to tie into
SAML and Microsoft SSPI systems and can be configured to operate
against custom identity solutions by using an Apache reverse proxy and
custom Apache modules. For examples of this type of identity provider
configuration, see Configuring a request header identity provider.

Using a custom RequestHeader identity provider may also be used for
advanced identity use cases such as configuring a smartcard like CAC or PIV
or configuring One Time Passwords (OTP). There are a few aspects to
understand :

1 Custom RequestHeader identity providers may not work with the
OpenShift client.

2 Smart Cards are not supported.
3 What can and cannot be done depends heavily on the identity provider.
For example, an identity provider, Red Hat IdM accessed via LDAP can be

configured to accept a password+pin One Time Password response from the
OpenShift web or client login.

Using the OpenShift client configured with a Red Hat IdM identity provider :
$ oc login -u=<username> -p=<password><hotp/totp_pin>

Again, this is heavily dependent on the identity provider's capability with no
guarantees of success or supportability.
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LDAP Identity Provider

Although using LDAP as an identity provider can provide a convenient way
to plug into commonly used existing infrastructure, there are some
drawbacks to be aware of.

Configuring an LDAP IDP potentially requires importing an LDAP bind DN
and password into OpenShift which has the permissions to perform lookups
against the LDAP tree. An LDAP administrative account should not be used
for this purpose, as OpenShift only needs to perform read operations as this
user. Distribution of admin credentials in this way is highly discouraged and
disallowed in many environments. If an appropriate user does not exist, it is
recommended to create an LDAP user for use by the OpenShift

OAuth server with the appropriate permissions.

Additionally, the LDAP IdP performs an LDAP simple bind operation to
authenticate the user, which transmits the user password to the LDAP
server for authentication. If using an LDAP IdP, ensure that TLS is enabled in
the IdP configuration to protect user passwords in transit.

Keep in mind that using TLS to communicate with the LDAP server still
requires that users of the cluster provide their LDAP password to OpenShift.
From a security perspective, this is not ideal since LDAP passwords are
generally used for multiple applications within an enterprise that may have
no relation to the OpenShift cluster. To avoid the potential for user LDAP
passwords to be leaked, it is recommended to choose a different IdP that
does not rely on password-based authentication.

Keep in mind that the LDAP identity provider does not need to be used in
order to gather groups from LDAP, since syncing groups to OpenShift
involves an admin running the group sync command at regular intervals
instead of relying on IdP configuration. In some environments, it might be
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beneficial to use an IdP other than LDAP for user authentication while
relying on LDAP only for group information.

Authorization

While authentication is meant to verify a user making a request,
authorization is still needed to ensure that the user has permission to make
the requested action. Figure 5.3 illustrates the flow of authentication and
authorizations steps in OpenShift.

Request

info ——>  Authentication 3 Audit

impersonation

l

il &—  Authorization

resource

Figure 5.3: The Request Moving Through the Authentication and Authorization Layers

After authentication, the OpenShift APl request is passed along (with the
asserted User info) to the Kubernetes authorization layer (after a visit to the
Audit layer). This layer is responsible for ensuring that the user has been
granted permissions, by policy, to perform the requested action against the
requested resource. Although the Kubernetes authorization layer is
pluggable, OpenShift does not allow customization here, and only uses the
Role-Based Access Control (RBAC) authorization type.

RBAC Overview

Authorization in OpenShift is managed using role-based access control
(RBAC). OpenShift takes a deny-by-default approach to RBAC. Roles can
be defined by grouped-together rules that represent allowed actions on
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objects within the cluster. These roles can then be applied to users and
groups via role bindings.

Roles are maintained in a hierarchy, allowing for the definition of cluster-
wide roles as well as project-specific (local) roles. RBAC evaluation takes
this hierarchy into account, checking cluster-wide roles first, then local roles.
This allows the cluster-wide roles to be augmented or overridden at the
project level if necessary.

Role bindings are also maintained using the same hierarchy of cluster and
local levels that are used by the roles themselves. This allows authorization
to be scoped using common roles as roles defined at the cluster level can be
used by a local binding to apply it to a specific project.

This section describes some recommended approaches to securely using
RBAC. For a more thorough explanation of the fundamental concepts of
RBAC, and the related oc commands for managing RBAC, see Using RBAC
to define and apply permissions in the official OpenShift documentation.

Kubeadmin Usage

As mentioned in the Identity section above, the kubeadmin user is all-
powerful within the cluster. Since it is not possible to restrict the

kubeadmin account via RBAC, it is recommended to limit the usage of this
account as much as possible, ideally disabling it completely after performing
the initial identity provider configuration. For details on the procedure to
disable kubeadmin, see the Kubeadmin and Other Super User

Accounts section of this chapter.

Best Practices for RBAC Management

This section contains assorted best practices to configuring RBAC in the
cluster.
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Follow the Principle of Least Privilege

The most important advice is to follow the principle of least privilege and
only grant the strictly required verbs to a role. While it is possible to use
wildcards to grant access to all resources in an apiGroup or allow the role to
use all verbs, it is always advisable to enumerate only the needed verbs and
resources, especially if the role only needs read access.

Use ClusterRoles for Namespaced Resources with Caution

Roles scoped at a cluster level, i.e. ClusterRoles, should be used with
extreme caution. Instead, using local roles to provide access at a namespace
level offers more granular access. It is better to grant access to an explicit
list of namespaces as opposed to the entire cluster. Otherwise, the
ClusterRole might inadvertently open up access to resources in a
namespace that the user does not need.

Make Use of the Predefined ClusterRoles

OpenShift 4 provides a set of predefined ClusterRoles. Defining custom
roles instead of using the default ones can result in unexpected behavior as
the predefined ClusterRoles are maintained and curated by the OpenShift
team, with frequent patches and role updates. When defining a ClusterRole,
it might be easy to forget about some resource or a verb, which might be
difficult to debug or worse, it might be tempting to create a ClusterRole with
more permission than is needed.
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Don’t Use the Default ServiceAccount, Use a Specific One
Instead

While each namespace comes with a stock default serviceAccount, it is
preferable to add a specific serviceAccount for a pod. This is both more
explicit and enables better documentation and traceability back to the
specific pod's serviceAccount. More importantly, the default service account
is used unless an explicit serviceAccount is specified for a pod — in practice,
extending the permissions for the default serviceAccount means that all
pods that don't explicitly set a specific serviceAccount would inherit these
extended permissions. This could result in unintended access being granted.

Manage Bindings via Groups as Much as Possible

When binding multiple subjects to a Role through a RoleBinding or a
ClusterRoleBinding, it is preferable to include all the subjects in a group and
refer to the group in the binding over individually listing the users. Having
the set of users centrally defined as a group allows for easier review and
management of the group, which is especially important if it's needed to
remove a user's binding.

Review and Test Access

Because RBAC is the central way of managing access to a cluster, it is
imperative to know who can do what. To display the RBAC configuration, it is
possible to list the roles and bindings provided the user has the read
permissions:

oc describe clusterrole.rbac

S

S oc describe clusterrolebinding.rbac

$ oc describe rolebinding.rbac -n devproject
S

oc describe role.rbac --all-namespaces
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The complete list of RBAC permissions might be overwhelming, so a good
starting point might be to review any custom roles and evaluate their RBAC
permissions:

« What can the role write to in the cluster?
« Can the role read or write to other resources in the cluster?
¢ Can the role read or write across namespaces?
Examining if any subjects have permissions to highly privileged default roles

might provide administrators with an idea about the general level of RBAC
access of the role to the cluster.

In addition to reviewing the RBAC rules, it is also possible to perform a dry-
run of a request using the auth can-i oc plug-in. Let's see some examples:

« Can the current user create secrets in the current namespace?

$ oc auth can-i create secrets

Yes

» Can the current user create secrets in the namespace default ?

$ oc auth can-i create secrets -n default

no

The auth can-i plugin might also be combined with impersonation, which is
a useful RBAC debugging tool for cluster administrators.
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When do Authorization Changes take Effect?

Changes to both roles and local group membership instantly take effect,
and the user is not required to re-login when their group membership
changes. Note that since LDAP groups are periodically synchronized, the
LDAP group membership would only come into effect on the next refresh. If
synchronizing groups from LDAP, consider how quickly authorization
changes need to take effect to meet security requirements and ensure that
the synchronization schedule is treated accordingly.

Impersonation

Impersonation allows a user to temporarily act on behalf of another identity.
This might be useful to grant a set of read-only permissions to a subject, but
allow them to explicitly acquire elevated privileges by impersonating another
subject with write permissions. This makes it harder to accidentally change
cluster objects as the write access must be explicitly requested by
impersonating the more powerful account.

Impersonation is recorded in Kubernetes audit logs. For example, if we allow
members of a group to impersonate cluster-admin and a member of this
group creates a secret using impersonation, the following request
(abbreviated for clarity) appears in the Kubernetes audit log :

verb": "create",
"USGI‘": {l
"username": "userl",

"groups": [
"groupl”,
"system:authenticated:oauth",
"system:authenticated"

1,

179



"extra": {

"scopes.authorization.openshift.

"user: full”

3,

"impersonatedUser": {
"username": "cluster-admin",
"groups": [

"system:authenticated"

1

Vo

"objectRef": {
"resource": "secrets",
"namespace": "default",
"name": "my-secret",
"apiVersion": "v1"

3,
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6. Network Security

The network is a major threat vector and is involved in most Information
security attacks. Typically, such network attacks exploit system
vulnerabilities or misconfiguration.

Some well-known network attacks are:

+ Denial of Service (DoS) and Distributed Denial of Service (DDoS)
attacks against any exposed component of an end-user service

¢ Man-In-the-Middle (MITM) attacks that intercept confidential
information

« Automated continuous port scanning for break-in attempts
The adoption of cloud computing challenges the traditional perimeter
security model that assumed relatively static and controlled workloads.

The concept of zero trust security has emerged to address new security
challenges of cloud native architecture:

1 The cloud infrastructure is shared among workloads with different levels
of trust

2 Applications are decomposed into interconnected containerized
microservices increasing the attack surface

3 Continuous deployment of new software versions potentially changes
the communication patterns
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This chapter describes the networking design elements used in OpenShift
that must be understood in order to address network security. The chapter
first covers the networking concepts that are part of upstream Kubernetes.
It then discusses the additional networking features brought by OpenShift
to complement the basic Kubernetes capabilities.

This chapter covers the measures implemented by OpenShift to secure
communication between the various components of each application
deployed on the cluster.

Kubernetes Networking Concepts

In Kubernetes, network policies define the permissions pods must
communicate with other pods and with network endpoints. The Container
Network Interface (CNI) provides a framework for providing network
connectivity to containers. Defining Ingress resources can create routes to
allow cluster applications to be exposed outside of the cluster.

Network Policies

Controlling the traffic between pods is an essential part of securing their
applications.

By restricting the service and endpoint connections, malicious activity can
be prevented, and the impact of misbehaving application pods can also be
limited. This prompts security practitioners to use a pod-focused evaluation
strategy of an application security situation.

Traditional workloads use firewalls and specific routing rules to provide
isolation via partitioning, traffic restrictions, and port blocking. In the
container world, container runtimes and orchestrators handle this
functionality through defined network security policies. One of OpenShift's
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strengths is the ability to comprehensively manage the wide variety of
control types in logical collections such as pods and their related controls.
These controls are described below.

A NetworkPolicy is a specification of how groups of pods are allowed to
communicate with each other and other network endpoints. NetworkPolicy
resources use labels to select pods and define rules that specify what traffic
is allowed to the selected pods. By default, pods are not isolated, and they
will accept traffic from any source.

Pods become isolated by having a NetworkPolicy that selects them. Once
there is any NetworkPolicy in a namespace selecting a particular pod, that
pod will reject any connections that are not allowed by any NetworkPolicy.
Other pods in the namespace that are not selected by any NetworkPolicy
will continue to accept all traffic.

Network policies are additive. If any policy or policies select a pod, the pod is
restricted to what is allowed by the union of those policies’ ingress and
egress rules. Thus, order of evaluation does not affect the policy result.

Network policies allow configuration of isolation policies for individual pods.
Network policies apply to pod traffic within a project, and do not require
administrative privileges, which gives developers more control over their
applications.

Network policies can be used to create logical zones in the network that
map to the organization network zones. The benefit is that the actual pod
location (which pod the node is running) is irrelevant, because network
policies allow segregation of traffic regardless of where it originates.
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The following example of NetworkPolicy objects demonstrate supporting
different scenarios:

1 Denying all traffic: To make a project deny by default, add a
NetworkPolicy object that matches all pods but accepts no traffic. For
example:

kind: NetworkPolicy
apiVersion: networking.k8s.io/vl
metadata:
name: deny-by-default
spec:

podSelector:

ingress: []

2 Only accept connections from pods within a project: To make pods
accept connections from other pods in the same project, but reject all
other connections from pods in other projects, add the following
NetworkPolicy object:

kind: NetworkPolicy
apiVersion: networking.k8s.io/vl
metadata:

name: allow-same-namespace
spec:

podSelector:

ingress:

- from:

- podSelector: {}
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3 Only allow HTTP and HTTPS traffic based on pod labels : To enable
only HTTP and HTTPS access to the pods with a specific label
(role=frontend in following example), add a NetworkPolicy object
similar to the following:

kind: NetworkPolicy
apiVersion: networking.k8s.io/vl
metadata:

name: allow-http-and-https
spec:

podSelector:

matchLabels:
role: frontend
ingress:
- ports:

- protocol: TCP

port: 80
- protocol: TCP
port: 443

4 Accept connections by using both namespace and pod selectors: To
match network traffic by combining namespace and pod selectors, use
a NetworkPolicy object similar to the following:

kind: NetworkPolicy
apiVersion: networking.k8s.io/vl
metadata:
name: allow-pod-and-namespace-both
spec:
podSelector:
matchLabels:

name: test-pods
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ingress:
- from:
- namespaceSelector:
matchLabels:
project: project_name
podSelector:
matchLabels:

name: test-pods

Since NetworkPolicy objects are additive, it is possible to combine multiple
NetworkPolicy objects together to satisfy complex network requirements.
For example, for the NetworkPolicy objects defined in previous examples,
define both allow-same-namespace and allow-http-and-https policies
within the same project. Thus, allowing the pods with the

label role=frontend to accept any connection allowed by each policy. That
is, connections on any port from pods in the same namespace, and
connections on ports 80 and 443 from pods in any namespace.

A network policy does not apply to the host network namespace. Pods with
host networking enabled are unaffected by NetworkPolicy object rules.

Container Network Interface

By default, Kubernetes pods are attached to a single network and have a
single network interface. In Kubernetes, container networking is delegated
to Software-Defined Networking (SDN) plug-ins that implement the
Container Network Interface (CNI). Network plug-ins in Kubernetes adhere
to the appc/CNI specification.

The CNI (Container Network Interface), a Cloud Native Computing
Foundation (CNCF) project, consists of a specification and libraries for
writing plug-ins to configure network interfaces in Linux containers. CNI
concerns itself only with network connectivity of containers and removing
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allocated resources when the container is deleted. As a result of this focus,
CNI has a wide range of support and the specification is simple to
implement.

A CNI plug-in is responsible for allocating the network interfaces to newly
created pods, and setting up the proper networking constructs to enable
communications between pods as well as with external entities (ingress and
egress communications). The CNI plug-in is also responsible for
implementing the network policies specified by the various NetworkPolicy
objects.

Ingress Traffic

To expose HTTP and HTTPS routes to Kubernetes services from clients
that are outside of the cluster, use Kubernetes Ingress resources. Beyond
exposing HTTP and HTTPS routes, Ingress resources allow creation of other
rules that define how traffic is routed to those services.

With Ingress resources, external URLs can be set to reach services, assign
name-based virtual hosts, choose TLS termination, and select to have
network traffic load balanced. TLS secrets can be named in the
specification, easing management of certificates.

To expose non-HTTP and HTTPS services, choose one of the following
Ingress types:

+ Type=NodePort: Using NodePort exposes ports associated with an
application’s service API object on every worker node on the cluster

+ Type=LoadBalancer: Using LoadBalancer assigned an external load
balancer that directs traffic to the associated service APl object in the
cluster
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An ingress resource must be associated with an ingress controller to fulfill
the ingress. The controller is usually associated with a load balancer,
although it can also be associated with other front ends or the edge router.
For further information on ingress, see the description of the Ingress API
Object in the Kubernetes documentation.

An Ingress Controller is required to satisfy an ingress. Creating only an
Ingress resource has no effect.

OpenShift Networking Features

This section describes the additional features and components provided by
OpenShift to secure cloud-native deployments supplementing Kubernetes'
base capabilities:

« Operators to cover the consistent deployment of Kubernetes
components

« Multiple network interfaces to pods enabling traffic isolation
+ OVS SDN with Network Policies enabled
+ Ingress and egress traffic security enhancements

+ Service Mesh to implement a zero trust network model for securing
communications between container-based microservices

Network Operators

OpenShift includes a set of operators that manage the various OpenShift
networking components. This ensures enforcement of best practices and
minimizes human errors during initial deployment and post-installation
operations.
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The following operators are responsible for the management of OpenShift
networking components:

» The Cluster Network Operator (CNO) deploys and manages the cluster
network components on an OpenShift Container Platform cluster,
including the Container Network Interface (CNI) pod network provider
plug-in selected for the cluster during installation.

¢ The DNS Operator deploys and manages CoreDNS to provide a name
resolution service to pods, enabling DNS-based Kubernetes Service
discovery in OpenShift.

» TheIngress Operator implements the ingresscontroller APl and is the
component responsible for enabling external access to OpenShift
Container Platform cluster services. The operator makes this possible
by deploying and managing one or more HAProxy-based Ingress
Controllers to handle routing. The Ingress Operator can be used to
route traffic by specifying OpenShift Container Platform Route and
Kubernetes Ingress resources.

* The SR-IOV Network Operator creates and manages the components
of the SR-IOV stack. It manages SR-IOV network devices and network
attachments to pods.

Multiple Network Interfaces

By default, Kubernetes pods are attached to a single network (the cluster-
wide pod network) and have a single primary network interface. This cluster-
wide pod network is configured during cluster installation and attached to
every pod.

Additional networks are typically useful in situations where network isolation
is needed, including data plane and control plane separation. Isolating
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network traffic is useful for the following performance and security reasons:

+ Performance : Single Root |/O Virtualization (SR-IOV) network devices
can be used for high performance applications. SR-IOV virtual function
(VF) interfaces can be attached to pods on nodes with SR-IOV
hardware.

« Security : Sensitive traffic can be sent onto a network plane that is
managed specifically for security considerations. For example, private
data that must not be shared between tenants or customers can be
separated.

The Multus CNI plug-in in OpenShift allows pods to also be connected to
additional networks via secondary network interfaces. The Multus CNI plug-
in acts as a meta plug-in, which is to say that it can call multiple other plug-
ins. This allows chaining of several other CNI plug-ins. One of these plug-ins,
the primary CNI plug-in, manages the cluster-wide pod network and
implements the Network Policies on that network.

Additional networks can be defined in the pod specification and will be
attached to the pods by secondary CNI plug-ins.

Every pod has an ethO interface that is attached to the cluster-wide pod
network. The additional network interfaces should be named net], net2, ...,
netN. Figure 6.1 shows an example of Multus CNI.
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Figure 6.1: Pod with Multiple Network Interfaces

Primary CNI Plug-ins

OpenShift uses a Software-Defined Networking (SDN) approach to provide
a unified cluster network that enables communication between all pods
across the OpenShift cluster. This cluster-wide pod network is established
and maintained by the primary CNI plug-in.

In OpenShift, Red Hat supports a number of alternatives for the primary
CNI plug-in:

« The OpenShift SDN CNI Plug-in: Configures an overlay network using
Open vSwitch (OVS). This is the default primary CNI plug-in for
OpenShift.
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« The OVN CNI Plug-in: Configures an overlay network using OVN. This
plug-in first became available as a technology preview in OpenShift 4.2.

« The OpenStack Kuryr CNI Plug-in : Used when OpenShift is deployed
on top of Red Hat OpenStack Platform, configures an overlay network
using OpenStack services such as Neutron.

Only the default OpenShift SDN CNI Plug-in will be described in this book.

The OpenShift SDN CNI Plug-in

The OpenShift SDN CNI plug-in provides all Kubernetes vl NetworkPolicy
features except for egress policy types and IPBlock.

Network policies are Kubernetes resources. As such, manage them using the
oc create and oc delete commands.

The OpenShift SDN plug-in configures each cluster node with an Open
vSwitch bridge named brO. This is illustrated in Figure 6.3.
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Figure 6.3: OpenShift SDN

The OpenShift SDN plug-in uses virtual Ethernet devices (veth) to connect
pods to the brO bridge. For each pod, the veth device is created and
connects one end to the ethO interface inside the pod and the other end to
the brO bridge.

Use the Open vSwitch ovs-vsctl show command on the node to display the
brO bridge and the connected ports:

[root@node ~]# ovs-vsctl show
1a7950b0-8dc2-4908-b682-b6dfc2b64969
Bridge "bro"
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fail_mode: secure

Port "vetha4f3b73f"
Interface "vetha4f3b73f"
Port "veth47219954"
Interface "veth47219954"
Port "tuno"

Interface "tunO"

type: internal

Port "vxlanQ"

Interface "vxlan0"

type: vxlan

options: {dst_port="4789", key=flow, remote_ip=flow}
Port "bro"

Interface "bro"

type: internal

ovs_version: "2.9.0"

The tunO interface on the node is an Open vSwitch port on the brO bridge.
OpenShift uses that interface for external cluster access. OpenShift
configures this external access through tunO with a combination of network
routes, Netfilter NAT rules, and entries in the brO flow tables.

OpenShift uses the vxlan_sys 4789 interface on the node, or vxlanO in brQ,
for building the cluster overlay network between nodes. Communications
between pods on different nodes go through this interface.

The OpenShift SDN plug-in implements network policies by configuring
OpenvSwitch flow rules, which dictate which packets are allowed and which
ones are denied.

The following excerpt shows how to allow external users to access an
application with labels that match a product-catalog application over a TCP
connection on port 8080.
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kind: NetworkPolicy
apiVersion: extensions/vlbetal
metadata:
name: external-access
spec:
podSelector:
matchLabels:
app: product-catalog
ingress:
- ports:
- protocol: TCP
port: 8080

This translates to the following flow rules on the OpenvSwitch bridge on the
node. The IP address 10.128.0.67 is the IP address of the pod.

[root@node ~]1# ovs-ofctl dump-flows br®@ -0 OpenFlowl3 --no-

stats

cookie=0x0, table=80, priority=150,tcp,regl=0x6d285,
nw_dst=10.128.0.67, tp_dst=8080 actions=output:NXM_NX_REG2[]

cookie=0x0, table=80, priority=100,ip,reqgl=0x6d285,
nw_dst=10.128.0.67 actions=drop

In the example above, there are a couple of things to notice:

« The first rule, which applies to table 80, allows TCP connections on port
8080.

« The second rule drops all packets that are not matched by the first rule.

OpenShift's SDN CNI options are managed by the Cluster Network
Operator. This defines a central place to configure the different plug-ins and
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options in order to fine-tune the deployment and meet any needs.

As with many other components in OpenShift, there is a single custom
resource that represents the source of truth for the operator. In this case, it
is the network.config object, which can be inspected as follows :

S oc describe network.config/cluster
apiVersion: config.openshift.io/vl
kind: Network
metadata:
creationTimestamp: "2020-04-07T02:35:11Z"
generation: 2
name: cluster
resourceVersion: "1861"
selflink: /apis/config.openshift.io/vl/networks/cluster
uid: af9ebf64-89ec-4c06-bed4-25db5ddcf0Ob3
spec:
clusterNetwork:
- cidr: 10.128.0.0/14
hostPrefix: 23
externallP:
policy: {}
networkType: OpenShiftSDN
serviceNetwork:
- 172.30.0.0/16
status:
clusterNetwork:
- cidr: 10.128.0.0/14
hostPrefix: 23
clusterNetworkMTU: 8951
networkType: OpenShiftSDN

198



serviceNetwork:
- 172.30.0.0/16

Secondary CNI Plug-ins

OpenShift provides a set of CNI plug-ins for creating additional networks in
the cluster. Secondary network interfaces are not controlled by Kubernetes
networking constructs like Network Policies or Ingress routers. See
Additional networks in OpenShift Container Platform for a list of supported
CNI plug-ins.

Ingress Cluster Traffic

By default, Kubernetes services created on the OpenShift cluster are of the
ClusterlP type which makes the Service exposed on a cluster only reachable
from within the cluster using an internal IP address.

Services accessed via HTTP/HTTPS, and/or TLS-encrypted protocols other
than HTTPS (such as TLS with the SNI header), can use Ingress Controllers
along with Ingress or Route resources to allow the service to be accessible
from clients located outside of the cluster.

As an alternative, services accessed through other protocols (such as UDP,
TCP, or SCTP) can be exposed externally using LoadBalancer or NodePort
service types

in which case the OpenShift infrastructure exposes the Service to external
clients as follows:
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« LoadBalancer type : Allows traffic to non-standard ports through an IP
address assigned from a pool configured at the infrastructure level

* NodePort type: Exposes the service on a given port on all worker
nodes of the cluster

It is also possible to allocate an external IP to a Service. The external IP
address must have been provisioned at the infrastructure level and attached
to a cluster node. With an external IP on the service, OpenShift sets up NAT
rules to allow traffic arriving at any cluster node attached to that IP address
to be sent to one of the internal pods. This is similar to the internal service IP
addresses, but the external IP tells OpenShift that this service should also
be exposed externally at the given IP.

The administrator must assign the IP address to a host (node) interface on
one of the nodes in the cluster. Alternatively, the address can be used as a
virtual IP. Virtual IPs are not managed by OpenShift and administrators are
responsible for ensuring that traffic arrives at a node with this IP.

Table 6.1 Ingress Cluster Traffic provides a summary of the various
methods to expose services to external clients.

Allows access to HTTP/HTTPS traffic and TLS-encrypted Use an Ingress Controller
protocols other than HTTPS (for example, TLS with the SNI with Ingress or Route
header). resources.

Allows traffic to non-standard ports through an IP address type=LoadBalancerin

assigned from a pool. the Service specification

Expose a service on the same port on all worker nodesinthe  type=NodePort in the

cluster. Service specification

. . externallIPs field of the
Manually assign an external IP to a service. - oo
Service specification

Table 6.1: Ingress Cluster Traffic
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OpenShift Routes

The need to expose services implemented on the OpenShift cluster to
clients external to the cluster was addressed early on by OpenShift before
Kubernetes introduced the concept of Ingress. This was addressed in
OpenShift by the concept of Route resources. Red Hat is one of the top
contributors to the Kubernetes community and helped shape the design
principles of Route for the community which also heavily influenced the
Ingress blueprint.

In OpenShift, Ingress Controllers are responsible for implementing the
networking constructs described by either Route or Ingress resources.

While basic functionalities are provided by both kinds of resources, Table 6.2
Ingress versus Route highlights some features that are only exposed by the
Route resource, in particular in the area of TLS connectivity.

Feature Ingress Route
Standard Kubernetes object X

External access to services X X
Persistent (sticky) sessions X X
Load-balancing strategies (e.g. round robin) X X
Rate-limit and throttling X X
IP whitelisting X X
TLS edge termination X X
TLS re-encryption X
TLS passthrough X
Multiple weighted backends (split traffic) X
Generated pattern-based hostnames X
Wildcard domains X

Table 6.2: Ingress versus Route
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Secured routes specify the TLS termination of the route and, optionally,
provide a key and certificate(s). Secured routes can use any of the following
three types of secure TLS termination:

« Edge Termination
With edge termination, TLS termination occurs at the Ingress Controller
before it is sent to its destination. TLS certificates are served by the
front end of the Ingress Controller, so they must be configured into the
route. Otherwise, the Ingress Controller’s default certificate will be used
for TLS termination. As TLS is terminated at the Ingress Controller,
connections from the Ingress Controller to the endpoints over the
internal network are not encrypted.

» Passthrough Termination
With passthrough termination, encrypted traffic is sent straight to the
destination without the Ingress Controller providing TLS termination.
Therefore, no key or certificate is required. The destination pod is
responsible for serving certificates for the traffic at the endpoint. This is
currently the only method that can support client certificates (also
known as two-way authentication).

* Re-encryption Termination
Re-encryption is a variation on edge termination where the Ingress
Controller terminates TLS with a certificate, then re-encrypts its
connection to the endpoint which may have a different certificate.
Therefore, the full path of the connection is encrypted, even over the
internal network. The Ingress Controller uses health checks to
determine the authenticity of the host.
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Ingress Controller and Operator

OpenShift supports the Ingress Operator which implements the
ingresscontroller APl and is responsible for enabling external access to
OpenShift Container Platform cluster services. The OpenShift Ingress
Operator can deploy and manage one or more HAProxy-based Ingress
Controllers to handle routing. The Ingress Operator can be used to route
traffic by specifying OpenShift Container Platform Route and Kubernetes
ingress resources.

In situations where several security zones are implemented on an OpenShift
Cluster, distinct Ingress Controllers are typically deployed for each security
zone to enforce segregation of ingress traffic.

Egress Cluster Traffic

In an application, only selected components might need an egress path to
reach external services. By default, OpenShift allows all traffic to leave the
cluster with no restrictions. However, OpenShift provides means to
implement fine grained filtering of egress traffic.

The traffic of a particular pod leaves the cluster with the source IP address
of the node it runs on. This may not be appropriate in the following
situations:
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+ Stateful firewalls controlling the external traffic expect the same IP
addresses in both directions (ingress/egress) and might drop egress
packets leaving the cluster with a worker node source IP address.

POD

NODE1
IP1

POD

NODE 2 POD
P2

PROJECT A

Figure 6.4: Controlling Egress Traffic

OpenShift provides several options for controlling the traffic leaving the
cluster.

These options are:
« Egress firewall
» Egressrouters

« Egress static IP

Egress Firewall

OpenShift allows the use of an egress firewall to limit the external hosts that
some or all pods can access from within the cluster.
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An egress firewall supports the following scenarios:

* A pod can only connect to internal hosts and cannot initiate connections
to the public Internet

* Apod can only connect to the public Internet and cannot initiate
connections to internal hosts that are outside the OpenShift Container
Platform cluster

+ A pod cannot reach specified internal subnets or hosts outside the
OpenShift Container Platform cluster

« A pod can connect to only specific external hosts

OpenShift SDN is required to be configured to use either the network policy
or multi-tenant modes to configure egress firewall policy.

Configuring the Egress Firewall

With the egress firewall, practitioners define rules to allow or deny traffic
(TCP or UDP) to the outside network. Practitioners then describe these
rules by creating an OpenShift EgressNetworkPolicy Custom Resource (CR)
object associated with a project. This way, different projects can have
different rules.

The following YAML file is an example of such an egress firewall.

[user@demo ~]$ cat firewall.yaml
kind: EgressNetworkPolicy
apiVersion: vl
metadata:

name: myfirewall

spec:
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egress:

- type: Allow
to:
cidrSelector: 192.168.12.0/24
- type: Allow
to:
dnsName: db-srv.example.com
- type: Allow
to:
dnsName: analytics.example.com
- type: Deny
to:

cidrSelector: 0.0.0.0/0

This object allows the egress traffic to access the 192.168.12.0/24 network,
and the db-srv.example.com and analytics.example.comsystems. The last
rule denies everything else. As OpenShift would allow the traffic if no rule
matches, checks the rules in order, and this last rule acts as a deny all
default. The rules only apply to the egress traffic and does not affect inter-
pod communication.

To create the object and associate it with a project, use the oc create -f
file.yaml -n project command:

[user@demo ~]$ oc create —-f firewall.yaml -n myproject

egressnetworkpolicy.network.openshift.io/myfirewall created
There are several restrictions when using an egress firewall :
* No project can have more than one EgressNetworkPolicy object

« The default project cannot use egress network policy
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These design choices tend to increase traffic safety of the pod boundary by
requiring explicit creation and centralization of egress.
Egress Routers

When a pod establishes a network connection to an external service hosted
on the network, the packets flow in the following way :

« From the pod to the brO bridge
» From the brO bridge to the node tunO interface where NAT occurs
» Finally, to the external service

From that service's point of view, the connection is originating from the

node IP address. The vxlanO bridge interface is used to access other nodes.
This is illustrated in Figure 6.5.
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Figure 6.5: Pod to External Services (tunO) and Pod-to-Pod (vxlanO) Communications

If OpenShift relocates the pod to another node or if it replicates the pod on
multiple nodes, the external service may see multiple source IP addresses.
To prevent the firewall from blocking the service, all the OpenShift node IP
addresses need to be authorized. If new nodes are added to the cluster, the
firewall rules will need to be updated.

By using an OpenShift Egress Router, a unique identifiable source IP
address is presented to the firewall and the external service.

An Egress Router is a particular pod running in the project. It acts as a proxy
between the pods and the external service. Router pods have two network
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interfaces:
+ ethO for communication with the other cluster pods

* macvlanO for communication with the external service

This is illustrated in Figure 6.6.
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Figure 6.6: Pod Communication to External Services through the Egress Router

Macvlan interfaces are special devices that directly expose node interfaces
to the container. The interface has a MAC address seen by the underlying
network.

The Egress Router runs a service that redirects traffic to a specified remote
server, using a private source IP address. The service allows pods to talk to
servers that are setup to only allow access from whitelisted IP addresses.
When deploying an Egress Router, an IP address from the host node's
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physical network that the host node resides is reserved by the cluster
administrator to be used by the Egress Router.

Application pods access the external service using the egress service on the
service's internal IP address or service name. The egress service redirects
the traffic to the egress routers which in turn send the traffic to the external
service with the egress IP (reserved for the host node) as the source IP. The
external service accepts the traffic since the source IP (Egress Router IP) is
whitelisted. This is illustrated in Figure 6.7.

PROJECT B

NODE1 POD
IP1

POD

NODE2
P2

POD

PROJECTA

* Blocked by the multi-tenant network plugin
** Blocked by the external service

Figure 6.7: Concept of OpenShift Egress Router

Multiple egress IPs (egress pods) can be configured (one on each node) so
that if a cluster detects that one egress IP has stopped working (node
failure), it would fail over and use another egress IP on the other nodes that
are preconfigured. This is illustrated in Figure 6.8.
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Figure 6.8: Failure to Standby Egress Router

Egress IP

Egress IP is an OpenShift feature that allows for the assignment of an IP to a
namespace (the egress IP) so that all outbound traffic from that namespace
appears as if it is originating from that IP address (technically it is NATed
with the specified IP). This feature is useful within many enterprise
environments as it allows for the establishment of firewall rules between
namespaces and other services outside of the OpenShift cluster.

The Egress IP becomes the network identity of the namespace and all the
applications running in it. Without egress IP, traffic from different
namespaces would be indistinguishable because by default outbound traffic
is NATed with the IP of the nodes, which are normally shared among
projects. Then, the firewall can be configured to accept or deny requests
from specific applications based on the IP address of the request. This is
illustrated in Figure 6.9.
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Figure 6.9: OpenShift Egress IP Concept

The concept is illustrated in the OpenShift Egress IP Concept diagram which
contains two namespaces (A and B), each running two pods (A1, A2, B1, B2).
Namespace A's applications can connect to a database in the company’s
network. B is not authorized to do so. The A namespace is configured with
an egress IP so the pod’s outbound connections egress with that IP. A
firewall is configured to allow connections from that IP to an enterprise
database. The B namespace is not configured with an egress IP so its pods
egress via the node’s IP. Those IPs are not allowed through the firewall to
connect to the database.

Egress IPs allow for the establishment of firewall rules between namespaces
and other services outside of the OpenShift cluster. The Egress IP becomes
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the network identity of the namespace and all the applications running in it.
Without egress IP, traffic from different namespaces would be
indistinguishable because, by default, outbound traffic is NATed with the IP
of the nodes, which are normally shared among projects.

Egress IPs, as opposed to an Egress Router, which is deployed as a pod, are
an OpenShift construct and are configured on the node via modifying the
node object (). See the Configuring Egress IPs section of this chapter below

The egress IPs have nothing to do with the IPs normally assigned to the host
interfaces.

Cluster admins can then assign one or multiple egress IPs (for failover) to a
project, which would force all traffic from the pods in that project
(regardless of which nodes they are running on) to use the primary egress IP
as the source IP. Note that in this case, the OVS flows will be automatically
set up to redirect any traffic from the project to the node that has the
primary egress IP (Node 2 in Figure 6.10) and then sent to the destination
from there.
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Figure 6.10: Manually Assigning Egress IPs with HA

In case of failure (such as node crashes) of the primary egress IP (IP 4), OVS
will automatically configure traffic flows so that traffic from all pods in the
project go through the node that owns the secondary egress IP (Node 3 on
Figure 6.11) and use that egress IP (IP 5) as the source IP of all traffic.
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Figure 6.11: Manually Assigning Egress IPs with HA — Failover Scenario

However, enabling this feature requires that manual steps be properly
configured.

Egress IPs can be automatically or manually assigned::

« Automatically assigned : the node HostSubnet of each node is set with
a range of egress IPs consisting of all the addresses that can be hosted
by that node. Then the project NetNamespace is patched with a
single IP to indicate the egress IP address from that namespace.

When an egress request is made, if the first node hosting the address
associated with the request is unreachable, this egress IP will automatically
be assigned to another node with a HostSubnet containing an address range
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that includes the requests IP. This approach works best when environments
are flexible with the IP addresses associated with nodes.

« Manually assigned : each node HostSubnet is patched with unique
egress IPs (1 address, an explicit list or range can be specified) of all the
addresses that can be hosted by only that node. Then, the project
NetNamespace is patched to indicate the egress IPs for network traffic
from that namespace. Multiple addresses can be assigned to a
namespace.

When an egress request is made, if the node hosting the first address
associated with the request is unreachable, the next egress IP from the
NetNamespace will be attempted. This approach works best in
environments such as public clouds which could have limitations on which IP
addresses are associated with specific nodes.

Configuring Egress IPs

Configuration of Egress IPs for a project in OpenShift requires two steps.

The first step is to set the node HostSubnet with the egress IPs of all the
addresses that can be hosted by that node.

A range can be specified:

S oc patch hostsubnet <node_name> --type=merge -p \
{
"egressCIDRs": [

"<ip_address_range_1>", "<ip_address_range_2>"
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A list or single IP address can be specified:

$ oc patch hostsubnet <node_name> --type=merge -p \
{
"egressIPs": [
"<ip_address_1>",
"<ip_address_N>"
]
)

Note : In providers such as AWS, it will often be required to assign a
secondary IP address to a node through the provider API. If the node is
deleted, all assigned IPs are added back to the pool of available addresses.
Therefore, it is important for nodes that are less likely to be deleted at any
point to be the egress handlers. This is especially important to consider
when autoscaling is utilized. If the cluster is configured with dedicated
infrastructure nodes across availability zones, binding the egress IPs to
those nodes is recommended to ensure cluster stability. And for HA, each
project NetNamespace should be patched with at least one egress IP
address from each of the infrastructure node’s HostSubnet.

The second step is to patch the project’s NetNamespace with egress IP
addresses.

If automatic configuration is used, only one IP egress address is supported.

$ oc patch netnamespace <project_name> --type=merge -p \
{
"egressIPs": [

"<ip_address>"
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But, if manual configuration is used, one or more egress IP addresses can be
specified.

$ oc patch netnamespace <project_name> —-type=merge -p \
|
"egressIPs": [
"<ip_address_1>",
"<ip_address_N>"

]

} 1

Additional information about configuring egress IPs can be found in
Configuring egress IPs for a project in the OpenShift documentation.

Service Mesh

With the transition from monolithic application to microservices,
applications spread and scale differently. If microservices allow for better
performance by offloading workloads to many hosts (distributed
computing), they also lead to an increased network of applications or
services. As such, it can become overly complex to track and monitor, in real
time, all the application components. Figure 6.12 visually illustrates this
complexity.
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Figure 6.12: Evolution from monolithic to microservices architecture

One solution is the use of a service mesh, which is a way to control all the
components that make up an application and its data. A service mesh is the
network of microservices that make up applications in a distributed
microservice architecture and the interactions between those microservices.
It aims to reliably deliver requests through a complex topology of services. A
service mesh is typically implemented as an array of lightweight and
stateless network proxies that are deployed alongside application code. A
service mesh is not simply a monitoring or telemetry platform decoupled
from applications; rather, it is an extra layer that sits on top of running
applications.

The sidecar proxy implements generic functions such as encryption,
authentication, authorization, load balancing, and tracing. Application
developers do not have to code these features in each microservice allowing
them instead to focus on the core microservice functionality. This provides a
standard hardened implementation of the generic functions enhancing the
application security. This is illustrated in Figure 6.13.
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Figure 6.13: Microservices Architecture with Sidecar Proxy

Based on the open source Istio project, Red Hat OpenShift Service Mesh
adds a transparent layer on existing distributed applications without
requiring any change to the service. Add Red Hat OpenShift Service Mesh
support to services by deploying a special sidecar proxy to relevant services
in the mesh that intercepts all network communication between
microservices.

Red Hat OpenShift Service Mesh offers an easy way to create a network of
deployed services that provide :

« Discovery

Load balancing
» Service-to-service authentication

« Failure recovery
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+ Metrics

» Monitoring
Red Hat OpenShift Service Mesh also provides more complex operational
functions including:

+ A/B testing

+ Canary releases

* Rate limiting

+ Access control

* End-to-end authentication

Red Hat OpenShift Service Mesh Architecture

Red Hat OpenShift Service Mesh is logically split into a data plane and a
control plane. This is illustrated in Figure 6.14.
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Figure 6.14: Service Mesh Data and Control Planes

The control plane manages and configures proxies to route traffic, and
configures Mixer to enforce policies and collect telemetry.

« Mixer enforces access control and usage policies (such as authorization,
rate limits, quotas, authentication, and request tracing) and collects
telemetry data from the Envoy proxy and other services. Note : The
functionality provided by Mixer is being moved into the Envoy proxies.
Use of Mixer with Istio will only be supported through the 1.7 release of
Istio.

+ Pilot configures the proxies at runtime. Pilot provides service discovery
for the Envoy sidecars, traffic management capabilities for intelligent
routing (for example, A/B tests or canary deployments), and resiliency
(timeouts, retries, and circuit breakers).
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+ Citadel issues and rotates certificates. Citadel provides strong service-
to-service and end-user authentication with built-in identity and
credential management. Use Citadel to upgrade unencrypted traffic in
the service mesh. Operators can enforce policies based on service
identity rather than on network controls using Citadel.

« Galley manages the service mesh configuration. Galley validates,
processes, and distributes the configuration to the other service mesh
components.

Red Hat OpenShift Service Mesh also uses the istio-operator to manage
the installation of the control plane.

Security Aspects

The Red Hat Service Mesh adds another layer of security to OpenShift to
secure the applications by implementing a zero trust network.

Control Plane

By default, Red Hat OpenShift Service Mesh installs a multi-tenant control
plane. Cluster administrators should specify the projects that can access the
Service Mesh and isolate the Service Mesh from other control plane
instances. The main difference between a multi-tenant installation and a
cluster-wide installation is the scope of privileges used by the control plane
deployments, for example, Galley and Pilot.

Role-Based Access Control Features

Istio Role-Based Access Control (RBAC) provides a mechanism for use to
control access to a service. It can allow administrators to identify subjects by
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username or by specifying a set of properties and apply access controls
accordingly.

Red Hat OpenShift Service Mesh extends the ability to match request
headers by using regular expressions.

The Istio Container Network Interface (CNI) Plug-in

Red Hat OpenShift Service Mesh includes CNI plug-in, which provides an
alternate way to configure application pod networking. The CNI plug-in
replaces the init-container network configuration eliminating the need to
grant service accounts and projects access to Security Context Constraints
(SCCs) with elevated privileges.

Integration with APl Management

The Mixer adapter API allows the integration of a variety of infrastructure
backends like metrics and logs. It is also used to integrate with API
management frameworks such as Red Hat 3Scale.

The integration of Red Hat 3Scale APl management with Red Hat Service
Mesh adds a layer of business security to the internal microservice mesh.

The 3Scale adapter communicates with the 3Scale Service Management

API, authorizes requests, and reports usage.
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/. Auditing

Auditing is a method of tracking security-relevant actions and events on a
system. By generating and storing audit log events, a history of user or
system actions can be reviewed to determine the attribution and scope of
unauthorized changes. This can be used to discover and attribute events
happening on the system. In turn, an information security program can
identify and respond to audit events, ideally in real time, or have sufficient
detail for an incident post-mortem. This improves the overall security
posture when reviewed from a programmatic perspective.

Auditing goes beyond logging, or pairings of event sources and sinks.
Auditing creates actionable inferences from data. These are examined by a
risk management activity and possibly acted upon. Ideally, these audit
inferences are phrased as automation that can alert the human elements of
the information security program into action on an appropriate timescale
(real-time, monthly, quarterly, annually). To illustrate an example of the
difference between logging and audit : logging can record keystrokes, while
auditing determines if some of those keystrokes may have done something
to impact security.

In the context of OpenShift, audit functions are distributed among
subsystems differently from standard Linux system processes. OpenShift
provides certain available solutions and expresses default opinions regarding
audit functions. This section, therefore, intends to illustrate this uniqueness,
and describe strategies that allow OpenShift to fulfill a comprehensive set
of audit standards which do not change regardless of the architecture at
hand. Some of this fulfillment will come from augmentation and
reconfiguration of the included functions.
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OpenShift's Approach to Audit and Logging

OpenShift is architected in a way that leverages the utility of containerizing
its own applications and subsystems. This means that many traditional Linux
audit functions are architected to fit OpenShift's placement in an overall
solution set.

OpenShift is designed largely with a cloud-native approach. This means that
itis structured for cloud-based practices, even though it can run on bare-
metal platforms. This architecture decision precipitates an impact on the
responsibility boundary of what OpenShift chooses to provide by default.

This may require a bit of rethinking on role separation, since an Information
Security program may need to separate the duties of the function

creator (performed by an application role), and the activity review
(performed by an auditor role). This is because practitioners may arrive here
with a certain viewpoint regarding responsibility for conducting audits and
may perceive certain practices presented herein as a change of
responsibility.

As in traditional information systems, audit responsibility in OpenShift is
shared between applications and the underlying platform. To meet all
organizational requirements, application teams may need to understand
what tools are provided by the platform to facilitate audit and logging. For
example, the development team is responsible for producing audit logs for
their applications, but they may be able to take advantage of logging
aggregation mechanisms for collection if provided by the platform.

Non-Repudiation of Audit Data

Since audit logs contain a record of security-relevant events, it is important
to ensure they are not tampered with. This involves configuring auditing
services to securely collect and store audit logs, and to protect those audit
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logs from unauthorized access. In many cases audit logs are securely
forwarded to a log storage component or Security Information and Event
Management (SIEM) system that is managed by a separate operations or
security team. Information systems include this type of secure forwarding
configuration to maintain non-repudiation of audit data, which is often an
organizational requirement.

The auditd service in RHEL and RHCOS meets the requirements for
ensuring non-repudiation for the audit logs it processes. However, it should
be noted that general log collectors such as those found in the OpenShift
cluster logging stack are best-effort. OpenShift leverages its cluster logging
components to aggregate audit, so the best-effort qualification is applied to
audit collection and forwarding.

Auditing Capabilities
What Can Be Audited?

In the context of OpenShift Container Platform, auditing occurs at both a
host operating system context and at an OpenShift APl context. This
chapter will address how auditing is implemented in both of these contexts.

Audit in OpenShift Container Platform 4

Host Operating OpenShift API
System

kube-apiserver

Auditd

openshift-apiserver

Figure 7.1: Audit in OpenShift Container Platform 4
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Auditing of the host operating system consists of the standard auditing
capabilities provided by the auditd service in Red Hat Enterprise Linux
(RHEL) and Red Hat CoreOS (RHCOS). This includes recording an event--
such as host authentication or attempts to access sensitive host
configurations--the date and time, and the identity of the user who
triggered the event. The use of the Audit system is a requirement of many
organizational security policies and a number of security-related
certifications. For more information, consult the auditing chapter in

the RHEL 8 Security Hardening Guide.

Auditing at the OpenShift context consists of recording the HTTP requests
made to the OpenShift API. The OpenShift API consists of two
components: the Kubernetes API server and the OpenShift API server. Both
of these components provide an audit log, each recording the events that
have affected the system by individual users, administrators, or other
components of the system. For more information, consult the OpenShift
documentation for node audit logs and the Kubernetes Auditing
documentation.

Applications deployed to OpenShift Container Platform may also be subject
to auditing requirements per organizational policy. Application developers
may choose to use the default cluster logging components to aggregate
audit or other security-related logs. However, cluster logging is best-effort,
and if application auditing requirements dictate a higher level of reliability,
then developer-provided mechanisms such as writing directly to an off-
cluster log store should be used instead.

Centralized Management of Audit Configuration

As discussed earlier in this book, the configuration of OpenShift Container
Platform is stored and applied by the platform itself. This includes the audit
configuration of the platform. This is beneficial because it ensures that
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security-relevant configuration such as audit is managed in a single location
and applied consistently across all applicable system components.

To comply with organizational policy, an OpenShift administrator should
configure the audit subsystem to capture relevant security data.

This section was written to help an OpenShift administrator learn how to
configure the audit subsystem through centralized configuration
management facilities. This involves identifying what events should be
audited, creating rules to capture those events, and offloading audit records
to a centralized facility such as a Security Operations Center (SOC).

Host Operating System Audit Configuration and
Requirements

Audit is enabled by default in Red Hat Enterprise Linux CoreOS

(RHCOS); however, the audit subsystem is running in a default configuration
and without any audit rules. The auditd configuration
(/etc/audit/auditd.conf) file should be modified as necessary to meet
common organizational audit requirements such as retention and fault
tolerance. Additionally, audit rules must be configured to record events. An
example of configuring audit rules using Ignition and the OpenShift Machine
Config Operator is discussed later in this section. The auditd configuration
file can be updated by replacing the entire file contents using Ignition and
the Machine Config Operator.

Audit retention and storage capacity planning. By default, retention of
host audit is set to rotate 8MB audit log files up to a maximum of 5 files :

flush = INCREMENTAL_ASYNC
max_log_file = 8

num_logs = 5
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max_log_file_action = ROTATE

Given the configuration above, a limited set of audit logs are retained by
default. An organizational compliance profile may require changing the
max_log_file_action from rotate to keep_logs to ensure auditis not lost. In
that case, be sure to allocate at least 10 GB to store host operating system
audit, and be sure to implement a forwarding or rotation mechanism that
manages host disk space while preserving audit.

Audit reduction. Since auditd is only configured with the rules that are
specified by the system administrator, additional reduction of host operating
system audit before long-term storage is not necessary.

Audit fault tolerance. A common failure scenario for host operating system
audit is running out of disk space. In the auditd configuration, several
configuration keywords control system behavior when disk limits are
reached:

space_left = 75

space_left_action = SYSLOG
verify_email = yes
action_mail_acct = root

50
admin_space_left_action = SUSPEND
disk_full_action = SUSPEND
disk_error_action = SUSPEND

admin_space_left

An organizational compliance profile may require changing auditd
configuration to halt the system in case the auditd process cannot create
audit records. An example of this is changing the

admin_space_left_action to halt to shutdown the host to ensure audit data
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is not lost. To prevent system outages when using this setting, be sure to
allocate enough disk space on the host filesystem with proper monitoring
and alerting of disk space usage.

OpenShift APl Audit Configuration and Requirements

OpenShift APl audit is enabled by default and is produced by both the kube-
apiserver and openshift-apiserver components. The audit configuration of
each is defined by a combination of default settings and corresponding
custom resources named KubeAPIServer and OpenShiftAPIServer,
respectively. For more information, consult the Kubernetes Auditing
documentation.

Audit retention and storage capacity planning. Retention and rotation
settings are set in the default settings for each API server. By default,
retention is set to rotate 100MB audit log files up to a maximum of 10 files.
This applies to both APl server components:

maximumFileSizeMegabytes: 100

maximumRetainedFiles: 10

Given the default settings above for both APl components, allow at least
2GB of storage on each master node for the OpenShift API audit. Since
OpenShift APl audit files are not retained for long-term review, configuring
forwarding of APl audit logs is recommended.

Audit reduction. For each API server component, an audit policy
configuration controls which messages are logged, and at what level. This
audit policy is set in the default configuration for each server component. To
reduce the OpenShift API audit without modifying the default policy
configuration, an external or custom component must be responsible for the
reduction.
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View the default audit policy configurations here::
« kube-apiserver default audit policy

« openshift-apiserver default audit policy

Audit fault tolerance. Fault tolerance settings are limited for OpenShift API
audit.

OpenShift cluster logging may be used to collect and forward APl audit logs.
If this configuration is in place, then the Fluentd collector processes are
monitored by Prometheus by default. Take care to configure Prometheus
Alerting to notify an administrator of alerts, and be sure to monitor the
relevant fluentd alerts as defined in the OpenShift documentation. Be aware
of the limitations of using the cluster logging stack to aggregate audit logs
discussed later in this chapter.

Managing Operating System Audit Configuration

In RHCOS, auditd is enabled by default but is not configured with any audit
rules. Audit rules can be added to auditd by customizing the OpenShift
Machine Configuration that is used to configure Red Hat CoreOS nodes.

Describing how to create an audit policy that meets specific organizational
requirements is outside the scope of this book. However, the example below
shows how to configure two commonly-defined settings: 1) configuring
auditd to start early during boot with required kernel parameters, and 2)
creating a single audit rule file to monitor authentication configuration.
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1 Create an audit rules file to provide as part of the audit configuration.
This will be applied to each host via a MachineConfig resource :

$ cat <<EOF > usergroup.rules

-w /etc/passwd -p wa -k identity
-w /etc/group -p wa -k identity
EOF

2 Convert the audit rules file to a URL-encoded string to use in an Ignition
configuration file

$ cat usergroup.rules | python3 -c \
"import sys, urllib.parse; \
print (urllib.parse.quote(''.join( \

sys.stdin.readlines())))"

-w%20/etc/passwd%20-p%20wa%20-k%20identity%0OA-
w%20/etc/qgroup%20-p%20wa%20-k%20identity%0A

3 Create an OpenShift template capable of creating both a master and a
worker MachineConfig snippet, making sure to embed the URL-
encoded audit rules as file content. Also note the kernel argument
audit=1 to force auditd to start early during boot:

$ cat <<EOF > 50-audit-machineconfig-template.yml
apiVersion: template.openshift.io/vl
kind: Template
metadata:
name: machine-config-audit
objects:
- apiVersion: machineconfiguration.openshift.io/vl

kind: MachineConfig

metadata:
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name: 50-S$S{NODE_ROLE}-audit
labels:
machineconfiguration.openshift.io/role: S$S{NODE_ROLE}
spec:
config:
ignition:
version: 2.2.0
storage:
files:
- contents:
source: data:,-w%20/etc/passwd%20-p%20wa%20—
k%20identity%0A-w%20/etc/group%20-p%20wa%20-k%20identity%0OA

filesystem: root

mode: 0640
path: /etc/audit/rules.d/usergroup.rules
systemd:
units:

- name: auditd.service
enabled: true
kernelArguments:
- audit=1
- audit_backlog_limit=8192
parameters:
- description: “Node role: master or worker”
name: NODE_ROLE
required: true
value: worker
EOF
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4 Create two MachineConfig resources, one for masters and one for
workers. Note the different parameter values passed for NODE_ROLE:

$ oc process -f 50-audit-machineconfig-template.yml -p
NODE_ROLE=master | oc create -f -
machineconfig.machineconfiguration.openshift.io/50-master-audit
created

$ oc process -f 50-audit-machineconfig-template.yml -p
NODE_ROLE=worker oc create -f -
machineconfig.machineconfiguration.openshift.io/50-worker—-audit
created

5 Verify the MachineConfigs were created and the Machine Config
Operator has applied the changes:

$ oc get mc
NAME
GENERATEDBYCONTROLLER

IGNITIONVERSION CREATED
50-master-audit

9s
50-worker-audit
2.2.0
39s

rendered-master-1el1fd72a8847c79d34cd53d456a73d2a
ab4d62a3bf3774b77b6f9b04a2028faecl568aca 2.2.0
2d22h

rendered-master-e2004dfefa416c44d960ebc81lcf59bdb
ab4d62a3bf3774b77b6f9b04a2028faecl568aca 2.2.0

9s
rendered-worker-035f057f6db110f80437ceellce8a314

237



ab4d62a3bf3774b77b6£f9b04a2028faecl568aca 2.2.0
2d22h

rendered-worker-3cc6346f1fe8fdcl179c36892f0e6b6b35a
ab4d62a3bf3774b77b6£f9b04a2028faecl568aca 2.2.0

39s

$ oc get node

NAME STATUS

ROLES AGE VERSION
ip-10-0-143-57.ec2.internal Ready,SchedulingDisabled
worker 29h vl.16.2

S oc describe node ip-10-0-143-57.ec2.internal

Name: ip-10-0-143-57.ec2.internal
Roles: worker
Annotations: machine.openshift.io/machine:

openshift-machine-api/aws009-6gh5c-worker-us-east-la-wtvgm

machineconfiguration.openshift.io/currentConfiq:
rendered-worker-035f057f6db110f80437ceellce8a31l4

machineconfiguration.openshift.io/desiredConfig:
rendered-worker-3cc6346f1fe8fdcl179c36892f0e6b35a

6 Obtain a debug session to an updated node and verify the auditd rules:

S oc debug node/ip-10-0-143-57.ec2.internal
Starting pod/ip-10-0-143-57ec2internal-debug
To use host binaries, run “chroot /host”

Pod IP: 10.0.143.57
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If you don't see a command prompt, try pressing enter.

sh-4.2# chroot /host

sh-4.4# cat /etc/audit/rules.d/usergroup.rules

-w /etc/passwd -p wa -k identity

-w /etc/group -p wa -k identity

sh-4.4# cat /etc/audit/audit.rules

## This file is automatically generated from /etc/audit/rules.d

-w /etc/passwd -p wa -k identity
-w /etc/group -p wa -k identity

sh-4.4# auditctl -1
-w /etc/passwd -p wa -k identity
-w /etc/group -p wa -k identity

sh-4.4# exit
exit

sh-4.2#
sh-4.2# exit

Removing debug pod

Managing OpenShift APl Audit Configuration

OpenShift APl audit logs are produced by both the kube-apiserver and
openshift-apiserver components. The audit configuration of each is defined
by a combination of default settings and corresponding custom resources
named KubeAPIServer and OpenShiftAPIServer, respectively.

The openshift-kube-apiserver-operator manages the kube-apiserver
component, including its audit configuration. The KubeAPIServer cluster-
scoped custom resource partially defines kube-apiserver audit
configuration, combined with other default values.
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S oc describe kubeapiserver/cluster

The openshift-apiserver-operator manages the openshift-

apiserver component, including its audit configuration. The
OpenShiftAPIServer cluster-scoped custom resource partially defines
openshift-apiserver audit configuration, combined with other default values.

S oc describe openshiftapiserver/cluster

See the Kubernetes Auditing documentation for more information about the
API audit log configuration, but be sure to coordinate any desired changes
with Red Hat Support to ensure those changes can be supported.

OpenShift Components that Facilitate Audit Generation and
Collection

By default, any audit logs generated by auditd on the host operating system
or the OpenShift APl server components will be rotated in place. OpenShift
provides log collection tools to assist with aggregating log files.

OpenShift Cluster Logging

The OpenShift Container Platform includes a suite of cluster logging
components to facilitate aggregating logs from cluster nodes, including
node system logs and application container logs. By default, audit logs are
not collected by cluster logging.

To use cluster logging to collect and forward audit logs, configure log
forwarding for audit logs, which is discussed later in this chapter.
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Limitations of Using Cluster Logging_for Application Audit Logs

When using cluster logging to collect and store audit logs generated by
hosted applications, be aware of how cluster logging components associate
a log to the container that produced it.

The container runtimes provide minimal information to identify the source of
log messages : project, pod name, and container id. This combination of
attributes is not sufficient to uniquely identify the source of the logs. For
example, if a pod with a given name and project is deleted before the log
collector begins processing its logs, information from the API server, such as
labels and annotations, might not be available. In this case, there might not
be a way to distinguish the log messages from a similarly named pod and
project or trace the logs to their source. This limitation means log collection
and normalization is considered best effort.

If hosted applications leverage the cluster logging services to collect
application audit logs, also be aware of default log retention settings for the
log store. By default, the logging-curator will run periodically, and prune all
log records after a configurable time. Consider increasing the retention time
for the desired index (such as the .operations index for event router
output) as described in the OpenShift documentation.

OpenShift Event Router

OpenShift Container Platform events are records of important life-cycle
information in a namespace and are useful for monitoring and
troubleshooting resource scheduling, creation, and deletion. When reviewing
cluster activity, it can be useful to also include the OpenShift events to
provide more context for cluster behavior. The Event Router component
listens to all OpenShift events across all namespaces, and copies them to
STDOUT to allow reading by the logging collector.
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OpenShift events can be viewed in Kibana by searching for fields with

kubernetes.event.* in the .operations.* index.

The Event Router must be deployed manually by a cluster administrator. See
more information in the OpenShift documentation.

Configuring Audit Log Forwarding with Cluster Logging

Since audit log retention on each host is limited, audit records should be
aggregated and forwarded to a secure log store or Security Information and
Event Management (SIEM) system.

Systems that store audit logs must be compliant with applicable
organizational and governmental regulations and must be properly secured.
The internal OpenShift Container Platform Elasticsearch instance that is
part of the OpenShift logging stack does not meet the requirements for
secure storage of audit logs. Instead, log forwarding to a secure destination
should be configured for both host and OpenShift audit logs.

There are two methods for configuring log forwarding for OpenShift
Container Platform: 1) using the Fluentd out_forward plug-in; or 2) using the
Technology Preview Log Forwarding feature of cluster logging.

Forwarding Cluster Logs Using the ‘out_forward’ Fluentd Plug-in

The Fluentd out_forward plug-in can send a copy of the logs to an external
log aggregator, instead of the default Elasticsearch. Optional TLS support
ensures that logs can be sent using secure communication as required by
the organization.

Consult the OpenShift documentation for details on configuring log
forwarding using the Fluentd out_forward plug-in.
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Make sure to include the following:

« A secure-forward ConfigMap in the openshift-logging namespace that
contains a secure-forward. conf file. The secure-forward.conf file must
specify :

« TLS settings, including the CA certificate of the log receiver
« Hostname and port of the log receiver

« A secret containing the CA certificate of the log receiver

Also, make sure to configure the log receiver appropriately. For more
information on configuring the Fluentd in_forward plug-in, see the Fluentd
documentation.

Forwarding Cluster Logs Using Log Forwarding (Technology
Preview)

Log Forwarding is @ Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These preview opportunities provide
early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology
Preview features,
see https.//access.redhat.com/support/offerings/techpreview/

Log Forwarding provides an easier way to forward logs to specific endpoints
outside the OpenShift Container Platform cluster than configuring
the Fluentd plug-ins directly. The ability to send different types of logs to
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different systems allows control of who in the organization can access each

type of log. Optional TLS support ensures that logs can be sent using

secure communication as required by the organization.

Master Node

W

Fluentd pipeline

/var/log/audit/audit.log pod

OpenShift logging stack
(ElasticSearch)

Logs forwarded to SIEM

/var/log/openshift-apiserver/audit.log
/var/log/kube-apiserver/audit.log
Audit logs
forwarded
with TLS
Worker Node
—= Fluentd r
Fluentd pipeline
/var/log/audit/audit.log pod
Application &
Infrastructure logs
=~ EXTERNAL traffic

Figure 7.2: Forwarding audit logs to an off-cluster SIEM

Consult the OpenShift documentation for details on configuring log
forwarding using the Log Forwarding feature of the cluster logging stack.

Make sure to include the following:

+ Configure the logs.audit parameter to forward to a secure log store

« Consider configuring logs.infra parameter to forward to a secure log
store. If the Event Router is deployed, then this will include forwarding of
all the OpenShift events, which can sometimes be helpful during an

audit review
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« Configure TLS by specifying a secret containing a key, certificate, and
certificate authority

« Configure a forwarding pipeline for each log source : logs.app, logs.infra,
and logs.audit

Reviewing Audit Logs
Accessing Audit Logs

OpenShift provides a tool to view node log files with the oc adm node-

logs command. Using the --path argument, this command can list and
display the contents of any log file stored in /var/log/, including auditd and
OpenShift API audit log files.

Host operating system audit logs for each node are written to
/var/log/audit/audit.log. To list the available auditd log files and then
display the contents of a specific file, do the following:

$ oc adm node-logs <node-name> --path=audit/

audit.log

$ oc adm node-logs <node-name> audit.log --path=audit/audit.log

[output omitted]

Similarly, the audit logs for the OpenShift API can be viewed in the
respective folder for each component:

$ oc adm node-logs <node-name> audit.log --path=kube-
apiserver/audit.log

$ oc adm node-logs <node-name> audit.log --path=openshift-
apiserver/audit.log

Since OpenShift APl services run in a highly available mode across three
master nodes, API audit records should be reviewed from all sources in
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aggregate. If forwarding audit logs to a SIEM, it is preferred to view them
from that system instead of from each node individually. Alternatively, the oc
adm must-gather CLI command can aggregate a snapshot of OpenShift API
audit for review on-demand. For more information, see the OpenShift
documentation.

Only OpenShift cluster administrators and users with the system:node-
admins role can execute the oc adm node-logs command.

See the OpenShift documentation for more examples of viewing API audit
log files. More information on the oc adm node-logs command can be found
with oc adm node-logs -h. The RHEL 8 Security Hardening Guide contains
more information about auditd and host operating system audit.

Interpreting OpenShift APl Audit

OpenShift APl audit logs each completed request executed by the API.
Each audit log record is formatted as JSON. Below is a partial example of an
APl audit record:

"kind": "Event",

"apiVersion": "audit.k8s.io/vl",

"level": "Metadata",

"auditID": "ad209cel-fec7-4130-8192-c4cc63f1d8cd",
"stage": "ResponseComplete",

"requestURI":

"/api/vl/namespaces/openshift-kube-controller-
manager/configmaps/cert-recovery-controller-lock?timeout=35s",

"verb": "update",
"user": {

"username":

"system:serviceaccount:openshift-kube-controller-
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manager:localhost-recovery-client",
"uid": "dd4997e3-d565-4e37-80£f8-7fc122ccd785",
"groups": [ ... ]
3,

"objectRef": ({

"resource": "configmaps",
"namespace": "openshift-kube-controller-manager",
"name": "cert-recovery-controller-lock",

3,
"responseStatus": {
"metadata": {},
"code": 200
3,
"requestReceivedTimestamp": "2020-04-
02T08:27:20.20096272",

Notable information from the sample above includes:
1 auditID:A unique audit ID, generated for each request.
2 requestURI: The request URI as sent by the client to a server.

3 verb: The Kubernetes verb associated with the request. For non-
resource requests, this is the lowercase HTTP method.

4 user: The authenticated user information.

5 objectRef: Optional. The object reference this request is targeted at.
This does not apply for List-type requests, or non-resource requests.
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6 responseStatus: Optional. The response status, populated even when
the ResponseObiject is not a Status type. For successful responses, this
will only include the Code. For non-status type error responses, this will
be auto-populated with the error Message.

7 requestReceivedTimestamp: The time that the request reached the API
server.

For more information about OpenShift APl audit, consult the OpenShift
documentation for APl audit and the Kubernetes Auditing documentation.

Performing an Event-driven Audit Review

An event-driven audit is the manual performance of ad-hoc audit functions
that use and go beyond the automated audit functions. These manual
actions serve to resolve the event that precipitated the need for an audit.
Examples of these triggering situations include :

« manual audit actions to respond to security team findings and requests,

» manual audit actions to understand and resolve emergent system
availability conditions such as resource exhaustion symptomes,

« manual audit actions to respond to a reported security incident,
including creation of data for outside support staff or confirmation of a
suspected intrusion, and

« manual audit actions to characterize available events to be created by

developers for future automated logging.

Ideally, these will be presented in a way that facilitates correlation between
various data sources. The strategy here is also based, as much as possible,
on the presentation of CLI-based actions to facilitate incorporation of

248


http://localhost:9000/https%E2%80%89://docs.openshift.com/container-platform/4.3/nodes/nodes/nodes-nodes-audit-log.html%23nodes-pods-audit-log-basic_nodes-nodes-audit-log
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/

successful and automatable recipes into ongoing event generation,
recording, and alerting.

The oc adm must-gather command can aggregate a snapshot of OpenShift
API audit for review on-demand. For more information, see the OpenShift
documentation.
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3. Encryption, Secret
Management, and Data
Protection

Encryption is a key capability for protecting sensitive data. Many regulatory
and compliance frameworks require the use of strong and

validated encryption to secure data at rest and in motion. Secrets
management is equally important. The term secret is a general way to refer
to sensitive data, such as passwords, OAuth tokens, and SSH keys. In
Kubernetes, a secret is an object that is used to store sensitive information.

Secrets can be created by the user and by the system. Restricting access to
secrets is one mechanism for protecting them. However, encryption
provides an even more compelling solution. In addition to secrets, OpenShift
leverages core encryption technologies including certificates, disk
encryption, and secure network transport mechanisms.
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Encryption

Encryption provides protection for both data in motion and data at rest.
Many encryption functions are necessarily convolved with related
verification functions, and these functions are frequently treated together
as a totality of a security control. Therefore, encryption and signing may be
collectively referred to here as encryption. Encryption, and related
cryptographic message authentication functions that decryption implies,
can:

« Encode the content of a message (encryption)

+ Authenticate the origin of a message (message digest creation and PKI
signing)

» Decode the content back into readability (decryption)

« Ensure that the content of the message has not changed since it was
sent (message digest verification)

» Prevent senders from denying they sent the encrypted message
(nonrepudiation via signature validation).
These encryption functions require three components that specify and fully

secure a transaction supporting all of the functions above :

« The date (establishment of shelf life, session key expiry, and partial non-
repudiation)

« High quality entropy
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» The encryption engine (primitive, algorithm, scheme)

« Encryption key management (forward secrecy, escrow, PKI vs shared
secret).

OpenShift promotes phrasing application interactions largely as socketed IP
services, and most commonly as HTTP and HTTPS. Since developers
frequently implement IP transport encryption by leveraging TLS functions
and related certification, much of the discussion here will address this. This is
likely because IPSec was traditionally less under control of a developerin a
production environment, and outside consumer client sessions could not be
depended on to negotiate any deeper than TLS during a session.

Encrypted Transport Layer Security (TLS) provides end-to-end encryption
for data sent between applications over the Internet. TLS does not secure
data at rest. HTTPS enables encrypted communication with websites via the
TLS protocol. Network level encryption applies cryptography at the network
layer. OpenShift control plane components enforce industry standards
including HTTP/2 defaults and TLS 1.2 or TLS 1.3. Certificate key sizes are
not configurable (RSA certificates are 2048, ECDSA for kubelet
certificates). Older TLS versions should not be used as US public sector
deployments may mandate versions higher than TLS 1.1 for cloud service
providers.

FIPS

To use FIPS validated modules with OpenShift Container Platform, the
RHEL or RHEL CoreOS nodes must be configured for FIPS mode at
installation time. FIPS requires that all key material is generated on a host
that is in FIPS mode. This ensures that all self-tests are executed prior to
key generation. For more information on FIPS, see the chapter on Risk
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Management and Regulatory Readiness. For more information on
configuring FIPS mode, see the chapter on RHEL CoreOS Security.

Network Time and Date for Encryption

OpenShift systems employing common encryption and related
authentication schemes can only assert validity when given accurate and
synchronous system time. Poor timekeeping has practical impact: Good
clocks provide protection against ill-timed session expiration. High
resolution synchrony offers correlation between system events during a
forensics-related investigation. Regarding encryption, the time accuracy and
synchrony of encryption systems establish a shelf life for encryption
certificates, assist in estimation of forward secrecy for intercepted traffic,
and provide a bit of temporal context when determining message
authenticity.

The matter of time synchrony is serious enough that a FedRAMP
authorization will not go forward without a key — authenticated NIST— or
DoD-derived clock tree in place within all elements of the cloud
infrastructure. Some regulatory requirements regarding time are quite
specific. For example, the DoD mandates use of the network time protocol
(NTP) by name. For OpenShift, this requires replacement of the default
chronyd service with ntpd in an implementation, or maintenance of a Plan of
Actions and Milestones (PoAM). Security practitioners should satisfy their
program management that the time service in use by OpenShift and its
applications is sufficient for the required precision and accuracy that the
program specifies.
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Information Security Program policy creators should analyze and determine

a required level of clock quality and methodology of validation. Then, they

should promulgate and validate this. To assist in this policy creation, clock
quality can largely be grouped by what security objective it can meet:

Security objective

All time-dependent
cryptographic functions are
able to function and be
verifiable

TLS certificate validity and
renewal is valid for clients

TLS session expiry,
cryptographic user session
authentication and expiry,
and system availability
vigilance are valid

Forensic correlation of
activities between systems
(encrypted and
unencrypted) is possible,
traceable, and useful

System availability
performance analysis and
improvement (especially
TLS standup and load
balancing) is possible and
useful

System availability
performance analysis and

improvement (esp. full stack

response) is possible and
useful

Minimum time accuracy

OpenShift and applications derive time from a scheme that
must use a universal time base or correctly interpolate time
zone, savings time, civil time declarations, and leap
information. A national standards-derived source or otherwise
justified ensemble should be specified.

OpenShift and applications should derive time within a minute
(due to timed release of announcement embargo on web-
distributed information, the certificates that secure these
releases should be maintained as timely)

OpenShift and applications should derive time within a second

OpenShift, applications, and related event generation should
derive time within hundreds of milliseconds or less from a
standards-derived clock tree or ensemble

OpenShift, applications, and related event generation should
derive time within tens of milliseconds or less

OpenShift, applications, and related event generation should
derive time within milliseconds or less

The information security program should specify all required quality
elements from the above that are determined to be necessary, hopefully in a

manner traceable to a related risk analysis.
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Actual time server selection and settings for OpenShift-provided RHCOS
systems may be made via a MachineConfig, as described in Chapter 2: Red
Hat Enterprise Linux CoreOS Security..

Entropy

Like the neglect of time synchrony, entropy service is frequently presumed
to be just there in Linux. This can leave the issue dangling until a security
validation exercise prompts further establishment of truth. At that point,
remediation of the discovered status into a compliant state can precipitate a
production impact.

More advanced entropy requirements should specify validation runs of the
rngtest command on the underlying RHCOS system, as required.

Information security programs may need to establish random number
quality, source selection, and validity. A truly random number is hard (and
slow) to find, therefore practically acceptable standards for
cryptographically secure pseudo-random number generators (CSPRNGs)
exist. This effort is a bit confounded by the endlessly swirling random
information on the Internet regarding the need for “true” randomness and
drama regarding purposefully weakened RNGs. The subject is shrouded in
folklore and leads to intuitive but wrong conclusions, such as whether adding
randomness to a weak random source makes the result more usefully
random or not.
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Regardless, the decision for acceptable entropy remains in the discretion
and responsibility of the Information Security Program. Linux can offer
multiple source types, “true” random (slow) and pseudorandom (fast and
non-blocking) numbers, of varying statistical quality. A risk analysis is
generally performed, and use cases are phrased. Sources could include:

+ /dev/random - can block

« /dev/urandom - a nonblocking PRNG where reads may fail

« /dev/srandom - a fast, good, user-installable PRNG kernel module
« getrandom() - comes from urandom

+ rngd - daemon for feeding random data to the kernel’'s random number
entropy pool

* virtio-rng - a guest kernel module and

« RDRAND - a controversial source of hardware randomness

The actual suitability of the source depends on the use case at hand.
Designers of an OpenShift application built to generate a Root CA would
want extremely high quality of randomness, possibly directly derived from an
exotic and specialized hardware source. Meanwhile, an OpenShift web
application generating a disposable web session navigation cookie may be
able to tolerate less randomness and a lower burden of proof for validators.
Sessions that seem ephemeral are subject to later traffic analysis.

Due to the hundreds of upstream repositories that compose OpenShift and
its dependency projects, and any possible future changes, this guide cannot
provide a blanket assurance that only this or that RNG source is truly in use.
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However, a more rapid validation strategy leans on assurances provided by
OpenShift itself. OpenShift indicates an ability to use randomness that is
improved by rngd. Use of rngtest against that will use actual statistical
measurement of the system at hand to establish a base quality level of at
least FIPS 140-2. Practitioners of serious information security programs are
urged to perform this test in-situ, as many typical (and normally
trustworthy) Linux default distribution installations on metal do fail this test,
albeit at a small rate aboard each afflicted distro instance. For example, the
following shows what can happen when an Information Security program
calls for better randomness than that provided by the state of the
(otherwise-approved trustworthy) OS on which OpenShift is installed :

root@0CP4metal:~ # cat /etc/os-release | grep PRETTY
PRETTY_NAME="Red Hat Enterprise Linux 8.0 (Ootpa)"
root@0CP4metal:~ # cat /proc/cpuinfo | grep -o rand | unigqg
rand
root@0CP4metal:~ # ps ax | grep rng

1251 ? Ssl 0:40 /sbin/rngd -f

31694 pts/0 S+ 0:00 grep --color=auto rng
root@0CP4metal:~ # cat /dev/random | rngtest -c 1000
rngtest 6.6

Copyright (c) 2004 by Henrique de Moraes Holschuh

This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE.

rngtest: starting FIPS tests...

rngtest: bits received from input: 20000032
rngtest: FIPS 140-2 successes: 998

rngtest: FIPS 140-2 failures: 2

rngtest: FIPS 140-2(2001-10-10) Monobit: O
rngtest: FIPS 140-2(2001-10-10) Poker: 0
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rngtest: FIPS 140-2(2001-10-10) Runs: 0O

rngtest: FIPS 140-2(2001-10-10) Long run: 2

rngtest: FIPS 140-2(2001-10-10) Continuous run: 0
rngtest: input channel speed: (min=235.945; avg=794.893;
max=8861.729)Kibits/s

rngtest: FIPS tests speed: (min=21.099; avg=83.878;
max=87.493)Mibits/s

rngtest: Program run time: 24799317 microseconds

The entropy quality establishment effort is a bit more involved when
OpenShift runs aboard a public cloud. Designers of OpenShift Deployments
and applications should obtain assurance of entropy quality from their cloud
provider or provide their own randomness as a service to the application.
This can lead Information Security Programs to look at a larger risk picture
that leads to a hybrid solution. Entropy sources and high-level certificate
generation could occur aboard extreme-security in-house cloud enclaves.
Web applications and other crucial certificates and keys are sent to cloud-
deployed OpenShift applications, along with an on-demand entropy stream.
Finally, in-cloud entropy sources can be allowed to remain for minor
cryptographic functions.

Such hybridization strategies prompt thinking regarding the security of
certificate material as well, which is now discussed below.

Public Key Certificates

Strong certificate use within the platform is critical to modern application
security. The only way for public key infrastructure (PKI) to scale for a
container orchestration platform is by increasing the use and reach of
automation. OpenShift provides integrated management of X.509
certificates for internal cluster components. Containerized applications are
responsible for managing their own certificates signed by organizational
CAs or may make use of the OpenShift Service CA if they wish.
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The platform includes multiple certificate authorities (CAs) providing
independent chains of trust, increasing the security posture of the cluster.
These internal self-signing CAs enable automation because the key is
known to the cluster. The certificates generated by each CA are used to
identify a particular OpenShift platform component to another OpenShift
platform component. CA bundles are used when more than one
communication path needs to be authenticated.

« Communication between the APl server, and the kubelet is secured by
the kubelet serving CA.

« Communication with etcd is secured by the etcd serving CA.
+ Authentication to the kubeconfig is managed by the admin-kubeconfig-
client CA.
The OpenShift CAs are managed by the cluster and are only used within the

cluster. This means that:

« Each cluster CA can only issue certificates for its own purpose within its
own cluster.

« CAs for one OpenShift cluster cannot be used for a different OpenShift
cluster, thus avoiding cross-cluster interference.

« Cluster CAs cannot be used by an external CA that the cluster does not

control.

Like all secrets, long-term certificates are a point of vulnerability. OpenShift
automatically manages rotation of certificates generated by the internal
CAs.
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With OpenShift 4, it is not possible to replace certificates for internal
platform components with certificates from a different CA. Generating
certificates with the right properties is complex and error prone.
Furthermore, orchestrating a roll-out of externally provided certificates
introduces the risk of cluster downtime due to mistakes in certificates or
delays in installing or updating certificates. Similarly, providing the ability

to use an external CA adds complexity. The cluster would require access to
the CA's private key so that it could automatically provision certificates for
various cluster components. The presence of the CA's private key on the
cluster also introduces the risk that an individual or service with access to
the private key on the cluster could mint certificates for the company's other
services and reduces the value of key rotation. A platform compromise
would then put the company's entire infrastructure at risk. Use of an external
CA also would remove the benefit that the individual independent chains of
trust provide today, adding the risk that a certificate might be used for the
wrong purpose.

To increase security for external access points, custom certificates from an
external CA can and should be installed for the public host names of the
OpenShift Container Platform APl and web console. This confines the use of
the internal CA to the cluster components. See:

» Replacing the default ingress certificate
» APl server certificates

» Securing the registry

Organizational Policies Regarding Self-Signed Certificates

Many organizations have policies restricting the use of self-signed
certificates. The reason for this is simple : self-signed certificates cannot
guarantee a valid identity, since a trusted third-party (certificate authority)
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did not verify (sign) the certificate. For this reason, self-signed certificates
should not be used to secure applications meant to be consumed by
external clients, such as clients not under the control by the same
organization.

However, systems and ecosystems that can establish trust, such as by
exchanging a common certificate authority (CA), can provide verification of
identity for certificates signed by an organization- or system-controlled CA.
OpenShift Container Platform creates an ecosystem where certificates
signed by an internal CA are trusted by all components of the platform. This
allows all of these internal components to communicate securely. The
internal OpenShift CAs are not officially exposed or supported for
certificate creation or trust outside of the cluster.

There are valid use cases where self-signed certificates are found in
practice. For example, all root CAs are self-signed. Web-of-trust PKI
offerings such as VeriSign use Intermediate CAs for issuing certificates, but
ultimately validate down to a self-signed root CA that they manage. In
OpenShift, a local, self-signed CA in the infrastructure provides a root trust
anchor just the same.

OpenShift platform components use a trust anchor pinning strategy for
internal TLS connections. This effectively creates different trust domains
between CAs and limits the reach of TLS clients by way of an explicit CA
trust. An example of this strategy is:

¢ ATLSclientis provided the OpenShift CA as a trust anchor, completely
excluding public or other system CA bundles

« ATLS server is provided with a server certificate signed by the
OpenShift CA
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* Success scenario
The TLS client tries to connect to the TLS server, and properly validates
the server certificate with the loaded CA.

 Failure scenario
The same TLS client tries (maliciously) to connect to a server that has a
server certificate from a different CA, such as the etcd CA. The TLS
client cannot validate the certificate as it does not have the etcd CA as
a trust anchor. This is the stage in the connection where a CA exception
prompt would normally be seen in a web browser. However, since the
internal TLS clients are non-interactive, the connection can only fail.

In both the success and failure scenarios described above, the trust anchor
pinning strategy guarantees secure connections for both client and server
applications.

Configuring Organizational Certificate Authorities

An Organizational CA or certificate should be used to expose externally-
facing OpenShift components. For example, the applications running on
OpenShift, the OpenShift Console & API, along with any sort of externally
facing OpenShift Operators should be signed by a CA that their respective
clients will trust.

If an organization does not maintain its own Root CA, then signed
certificates must be obtained from trusted third parties such as Verisign.
These certificates would be the ones that should be applied in these cases
as external clients are likely to also trust the third-party CA.

When a user is interacting with a system, they require a level of trust that
only a signed and third-party validated certificate can provide. For
organizations that may issue their own certificates, it is important to note
that a trusted CA bundle will need to be shared amongst the end-user
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systems to ensure that trust is validated. For example, use a named
certificate for Console or APl access, but use a Trusted CA bundle for
operator access to outside resources. For more information, see:

» Replacing the default ingress certificate

» APl server certificates

Securing the registry

« Configuring a custom PKI

Certificate Management for Applications

Applications deployed into OpenShift do not have their certificates
managed by default. Application developers can provide a certificate for
their application manually by creating a secret object that contains the key
and certificate files, and then mounting that secret in their deployment. If
the application will serve clients that are external to the OpenShift cluster,
creation and signing of application certificates are done outside of the
OpenShift context, such as by the organization’s security team.

Alternatively, the self-signed application wildcard certificate can be replaced
with a wildcard certificate provided by the organization. Typically, this is
done in non-production environments so that development can proceed
quickly, without the need to manually provision organizational certificates
for every deployed application. Production application deployments are
more carefully planned; therefore, it is less of a burden to provision those
certificates without the use of a wildcard.

Certificates with Secure Ingress and Routes

Application developers have the ability to secure HTTP traffic with either
Kubernetes Ingress or OpenShift route objects. OpenShift Route objects
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support four different TLS termination methods:
* None (for HTTP routes)
+ Edge
« Passthrough
* Re-encrypt
Ingress objects support TLS edge termination. In addition, edge terminated

or re-encrypted routes can be configured to use HTTP Strict Transport
Security (HSTS) if required.

When creating an edge-terminated or re-encrypt route, the application
certificate that should be presented to clients is included in the route
definition. Passthrough routes provide HTTPS ingress to the backing
application without any termination, so a certificate must be presented by
that application.

For more information on these options, see:
» Creating a re-encrypt route
» Creating an edge route
» Enabling HTTP strict transport security

¢ OpenShift Blog - Kubernetes Ingress vs OpenShift Route

Service Serving Certificates

If an application in OpenShift will only serve clients running in the same
OpenShift cluster, then a developer may choose to delegate management
of application certificates to the platform by using service serving
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certificates. For applications load-balanced by a service object, the service
serving certificates feature of OpenShift automatically generates a server
certificate that is valid for the network name of the service. The application
backing the service can load this certificate and serve HTTPS traffic within
the cluster. Clients of such an application need only trust the service CA that
is managed by OpenShift. For more information, see Securing service traffic
using service serving certificates.

Length of Key Considerations

The subject of key length choices rapidly becomes complex. This is due to
the varied effectiveness of key length for various algorithms available. Many
of these are automatically negotiable at session time. Other than use of
MachineConfigs to lock out certain algorithm types, the most effective
strategy is to simply enable FIPS mode in RHEL or RHCOS. FIPS mode
enforces good minimum key length usage and will even return a failure when
an algorithm is given a weak-sized key later.

Secrets Management

Secrets should be protected in-transit and at-rest. In OpenShift, platform
secrets are managed by the cluster, including certificates as described
above. For applications, there are three ways to pass secrets to containers:

 build secrets into the image
+ use environment variables
« and by mounting a volume into a container that contains a file with the

secrets

Kubernetes secrets support environment variables and mounted volumes.
Secrets should never be built into container images, as anyone who has
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access to the image can view the secrets. Updating the secret would also
involve rebuilding and redeploying the image. Environment variables are
safer. However, information from environment variables can be leaked. For
these reasons, it is recommended to use secret data volumes.

Secret Data Volumes

Secrets are mounted into containers using a volume plug-in. Secret data
volumes are backed by temporary file-storage facilities (tmpfs) and never
come to rest on a node. For more information on mounting secret volumes,
refer to Providing sensitive data to Pods.

Etcd Datastore Encryption

Etcd is a distributed key-value datastore used by Kubernetes to store
configuration data. Etcd is only available to OpenShift administrators. The
data in etcd represents the entire state of the Kubernetes cluster. The
datastore is continually monitored for changes which are then applied to the
running state of the system. By default, secret objects are stored in etcd and
retrieved as needed via the API. In OpenShift, all traffic between the API
server and the worker nodes is encrypted, ensuring that secrets stored in
etcd and transmitted to pods are encrypted in-transit.

The default configuration of etcd stores secret objects with base64
encoding. While this means the secret is not easily read, base64 does not
provide the same level of protection as encryption. Additional protection for
secrets at-rest can be provided by encrypting the etcd datastore. Once
enabled, encryption cannot be disabled. The AES-CBC cipher is used to
encrypt the datastore. Keys are created and automatically rotated by a
Kubernetes Operator and stored on the master node's file system. Keys are
available as a secret via the kube API to a cluster administrator.
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Once encryption is enabled in a healthy cluster, all relevant items in etcd will
be encrypted within a day. It is critical that the etcd data store be backed up
separately from the file system with the key. A backup of both the encrypted
etcd data and encryption keys must be available. For more information, see
Encrypting etcd data.

External Vaults

External vaults can be deployed to OpenShift for application secret
management. For example, the Vault Operator can be used to create and
manage the open source version of Hashicorp Vault on OpenShift. Red Hat
partners also offer commercially supported integrations in the Red Hat
Ecosystem catalog. A number of these solutions integrate with hardware
security modules (HSMs) for even more secure key management.

Protecting Cluster Data on Disk

Organizational policies may require system configuration data or other
operational data to be encrypted at rest. When installing OpenShift
Container Platform in a public cloud environment, there may be provider-
specific services that encrypt block devices that are used by server
instances. Alternatively, protection of data at rest can be achieved by
enabling full-disk encryption that is managed by utilities on the operating
system.

Leveraging Disk Encryption from Public Cloud Providers

By default, the OpenShift Installer will automatically configure disk

encryption at the provider level when available. Currently this is available for
Amazon Web Services (AWS) and Google Cloud Platform (GCP). For AWS,
disk encryption is provided by enabling encrypted Elastic Block Store (EBS)

268


http://localhost:9000/https%E2%80%89://docs.openshift.com/container-platform/4.3/authentication/encrypting-etcd.html
http://localhost:9000/https%E2%80%89://operatorhub.io/operator/vault
https://catalog.redhat.com/software/containers/explore
http://localhost:9000/https%E2%80%89://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html

volumes. Google Cloud Platform uses encryption at rest by default.
Alternatively, RHEL CoreOS can take advantage of the virtual trusted
platform module (vTPM) provided by Google Shielded VMs for instance-
level encryption of the root filesystem.

If the OpenShift cluster is installed with user-provisioned infrastructure,
configuring a disk encryption service from a cloud provider must be included
when the infrastructure is created, before the OpenShift Installer begins
installation.

RHEL CoreOS Full-Disk Encryption

RHEL CoreOS supports full-disk encryption for both Network Bound Disk
and TPM2 backed encryption modes. Please see the full disk encryption
section of the RHEL CoreOS Security chapter for more details.

Currently, RHEL CoreOS does not support key-cycling for full-disk
encryption. Full disk encryption is implemented through LUKS which uses
passphrases to unlock the actual key. The passphrase for unlocking the key
is discerned by Clevis through meta-data in the LUKS header and the
backend (either a TPM2 or a Tang server). If the passphrase needs to be
cycled, administrators must do a rolling-replacement of nodes using the
updated configuration. Future versions of RHEL CoreOS are expected to
have key-cycling support.

During the initial boot, the master key and the unlock passphrase are
randomly generated, after which Clevis binds to the disk to allow
unattended unlocking of the disk. RHEL CoreOS does not support third-
party Key Escrow or bring-your-own keys at the time of this writing.
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OpenShift Service Mesh

OpenShift Service Mesh, based on the open source Istio project, is an
optional component that can be used to encrypt traffic between services
(east-west traffic) on an OpenShift cluster. OpenShift Service Mesh builds
with RHEL 8 OpenSSL for encryption. OpenShift Service Mesh can be
deployed on a per-project basis. More information on OpenShift Service
Mesh is available in Chapter 6: Network Security.
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O. Securing Cl/CD

Continuous Integration and Continuous Delivery (Cl/CD) has become a
ubiquitous process for automated production and quality control of software
applications. It's natural for these processes to leverage the speed and
added security afforded by adopting container technologies such as
OpenShift. The question becomes, what changes or additions are necessary
to ensure conventional pipeline processes accommodate containers and
their security?

Best Practices for an Application CI/CD pipeline

Consider the following baseline application Cl/CD pipeline as shown in
Figure 9.1. The basic steps that are typical of most pipelines in a traditional,
non-containerized environment are shown below. In this example, a Java-
based application is being built using a technology such as Spring Boot, and
the deployment will be to a virtual machine or bare-metal server.
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Figure 9.I: Traditional Cl/CD Pipeline with a Deployment to a Non-Containerized Environment

New features and bug fixes are represented as individual issues in an issue
management system such as GitHub, GitLab, Jira, etc. They are then
ultimately assigned to a developer who clones code from a git repository via
a fork or by creating a new repository. After implementing a fix, the code is
pushed back into the repository, resulting in the application pipeline being
started. The exact details of this initial flow are out of the scope of this book,
but at a high level, this is the set of steps that results in a new instance of an
application CI/CD pipeline being created.
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Continuous Integration

There are several tools that can be used to implement this pipeline, including
Jenkins, GitLab ClI, Tekton, and Bamboo. The examples in this chapter will
focus on Jenkins. Once the code has been pushed, the pipeline will perform
agit clone (checkout stage of the pipeline) and build the application code.
In the case of this Java application, Maven will then be used to build the
application. The output will be a Java Archive (JAR) file which, in the case of
Spring Boot, is a deployable unit that can be run by a Java Virtual Machine
(JVM).

The application is built to avoid performing any analysis of code that may
prevent a successful build. This serves as the initial check provided to the
developer in terms of the viability of the committed code. Once the code
has been successfully built, all unit tests for the code can then be executed.
Some typical tools used for Java unit testing include Junit, Mockito,
TestNG, and Cucumber.

The amount of code coverage (lines of code executed by the unit tests)
required to continue with the pipeline is set by the software development
organization. Values typically range from 70% to 100%. The failure of any
unit test will result in pipeline failure. The primary goal for unit testing is to
avoid brittle code. Brittle code is also the source for application security
vulnerabilities and potential exploits by malicious actors.

Once the unit test phase has been completed, static code analysis is then
performed. SonarQube is an example of an open source static code analysis
tool. It can analyze most popular programming languages including Java,
Java Script, Python, Go, and C++. SonarQube focuses on programming best
practices. However, it does provide some basic security-related rules, such
as checking for potentially hard-coded passwords. There are other third-
party source code analysis tools, such as HP Fortify, that are specifically
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designed to detect security-related coding issues. After the scans are
complete, the JAR file can be stored for posterity in an artifact repository,
such as Sonatype Nexus or JFrog Artifactory.

Continuous Delivery

The previous stages make up the Cl portion of the CI/CD pipeline. The
automated delivery of the JAR file to the development server is the CD
portion of the pipeline. Once the application has been successfully (and
automatically) installed in the development server, automated integration
and QA testing can then take place. These tests verify the functionality of
the running application. They can be as simple as smoke tests or an
extensive exercise of most capabilities of the running application. Selenium
and Robot are example frameworks that can be used to perform automated
integration tests on web-based applications.

In this pipeline, there are manual gates for deploying the application into
additional environments. Members from the testing organization may have
the appropriate authority to promote the application to the staging
environment. While promotion to the production environment may require
higher levels of authorization, automatic deployment into a production
environment is possible in some of the most mature organizations — this is
known as continuous deployment. If any of the pipeline steps fail, the entire
pipeline is marked as failed, and everyone (developers, testers,
management, security, etc.) is notified. The results are analyzed, the solution
is iterated, corrections are submitted, and a new instance of the pipeline is
executed.

The previous example has demonstrated a CI/CD pipeline with basic levels
of security, deploying a more traditional, non-containerized environment. In
this traditional paradigm, the security and deployment of the platform is
unfortunately decoupled from the deployment of the application. This
presents a block to automation and reinforces silos between development
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and operations organizations. The advent of DevOps coupled with container
technology enables a holistic, systems view of software, and the platforms
they run on.

Container-based Cl/CD Pipeline

The pipeline in Figure 9.2 expands on the previous example, incorporating
container-based deployment and security steps.
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Figure 9.2: Application Cl/CD Pipeline with a Deployment to a Containerized Environment

Example source code for the pipeline shown in Figure 9.2, including the
Jenkinsfile, can be found in Sample SpringBoot / Angular application on
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Github.

The initial Cl stages start from a developer working on an issue continuing
through archival development of the JAR file to Nexus via Maven, all of
which are identical. The next step is to merge the JAR artifact into a
container image that can run the JAR — in this case an image that has
OpenJdDKinstalled on it. The golden base image is retrieved from an
enterprise image registry.

In this case we are using Red Hat Quay, which has some additional security
features built into it — most notably Clair, which will perform image scans for
potential operating system vulnerabilities. Note that this golden image is
considered secure by the time it is pulled by the application pipeline. The
base image is created from a Red Hat Universal Base Image (UBI), which is
derived from currently supported versions of Red Hat Enterprise Linux
(RHEL), such as RHEL 7 and RHEL 8. Creation and management of this
secure base image is discussed later.

Source-to-Image (s2i) build strategy is used to take the JAR file and place it
in a location of the base image’s file system. The base image is configured to
run the JAR file from this location. Once this process is complete, a new
application image will be created and stored in the internal OpenShift
registry by default. This image will only be available within the namespace
where the build was completed and will not be generally available. Other
techniques for building the application image (other than s2i) can be
explored in the OpenShift documentation on Build Strategies. Once the
image has been created, it is pushed into the enterprise registry as a
candidate image.

Skopeo

Skopeo is an open source utility that allows images to be copied between
different image storage mediums (registries, TAR files, etc.). It is used by the
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pipeline to copy the candidate image from the internal OpenShift registry
into the enterprise registry.

Container Registry and Image Scanning

The enterprise registry is the official source-of-truth for images. At this
point in the pipeline, compliance and vulnerability scans are performed using
the Security Content Automation Protocol (SCAP). Projects that must
adhere to the Defense Information Systems Agency (DISA) Security
Technical Implementation Guides (STIGs) can use OpenSCAP. An open
source SCAP interpreter, included in Red Hat Enterprise Linux, evaluates for
compliance during this step. OpenSCAP is also able to check whether any of
the latest known vulnerabilities are present within the image.

For simplicity, the security gates that are checked are not depicted in this
pipeline. They are shown and discussed in the container hardening
pipeline section which follows. In addition to OpenSCAP there are several
third-party tools that can be used to perform additional security scans or
examine images that are not based on RHEL. Some examples include
Twistlock, Anchore, BlackDuck, and Sysdig.

Multiple Environments

Once the scans have been performed and passed, the secure container
image is deployed into a development environment. Multiple environments
can be present in a single OpenShift cluster. These include environments for
individual developers and teams of developers, amongst others. For the
purposes of this example, there is a development environment and staging
environment depicted within the non-production OpenShift cluster.

Once the image has been deployed into a namespace, additional scans and
tests are executed. The Open Web Application Security Project (OWASP)
Zed Attack Proxy (ZAP) tool can be used to perform additional security

280



scanning of the actual application. A baseline scan is performed by point
OWASP ZAP to the web entry point of the deployed web application. This is
another technique for increasing application level security. OWASP ZAP will
crawl the application looking for potential vulnerabilities in HTML,
JavaScript, to name a few. The results can be manually inspected by the
security team in addition to setting up automatic pipeline gates.

Automated Testing

The next step is to perform automated testing against the deployed
containerized application, just as was performed in the previous non-
containerized pipeline. Once those tests pass, the pipeline is poised to
deploy the application into the next environment. The production
namespace is shown in a separate OpenShift cluster — this is a
recommended best practice. It gives greater flexibility by decoupling
infrastructure requirements, organizational ownership and other concerns
between production and non-production deployments.

One thing to note, is that once a secured container image has been created
for the application, the same immutable container image is used for
deploying the container into the different OpenShift Deployment
environments for that application. OpenShift provides several mechanisms
for configuring the dynamic aspects of the containerized application:

+ Persistent volumes can be used for storing file system data that must
be saved between restarts of the application

+ Configuration maps can be used to store configuration data that is
required by the application

» Secrets are used to store sensitive data used by the application, such as
certificates, keys, and passwords
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Supply Chain Security

The foundation of CI/CD supply chain security is using trusted components
that include the pipeline software, image scanners, and the base images on
which the application container images are built. These items must not only
come from trusted sources but must be refreshed on an on-going basis to
remain secure.

Trusted Supply Chain

When developers first start experimenting with container images, they often
obtain an image from a publicly available image registry. Many of these
registries will allow anyone to push images and usually do not provide a
security posture for these images. In some cases, the registries will not make
the image specification files available. While this is fine for experimentation
and non-critical application workloads, it is not a viable solution for the
enterprise.

Trusted supply chains attempt to resolve this issue by enforcing more
stringent requirements in terms of how images are created, and through a
tighter security stance. The concept is that the image comes from a trusted
source and every time that image is extended, the supply chain keeps track
of how it was done and scans for potential vulnerabilities or non-compliance.
The previous pipeline example demonstrated this concept; however, the
origin of the golden base image had not yet been discussed. This golden
image was produced from a container hardening pipeline, which is the
starting point of the trusted supply chain.

Image Hardening Pipeline

An image hardening pipeline is used to create the trusted golden
images upon which containerized applications will be built.
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The container image specification files for each of the base images are
stored in version control, no different than application source code. The
pipeline is automatically started whenever the source changes. Scripts used
by the container image specification file are stored alongside the
specification file in source control. In this example, all applicable DISA STIG
controls will be applied to the hardened image.

The hardening process can be performed by bash scripts stored in the git
repository. These scripts are derived from the ones generated by the
OpenSCAP tool using the ComplianceAsCode/SCAP Security Guide
content delivered natively in Red Hat Enterprise Linux. Just like in the other
pipelines, the first step is to clone the source code from the git repository.
The next step is to build the image, which will also apply any of the hardening
scripts. The question becomes what images will be used as the base of the
new image? The Universal Base Images (UBI) provided by Red Hat will serve
this purpose.

Using a Secure Container Base Image

A base image is one of the simplest types of images. Sometimes users will
refer to corporate standard build, or even an application image as the “base
image.” Technically this is not a base image. These are intermediate images.
An intermediate image is any container image that relies on a base image.
Typically, core builds, middleware, and language runtimes are built as layers
on top of a base image. These images are not used on their own, they are
typically used as a building block to build a standalone image.

A base image is an image that has no parent layer. Typically, a base image
contains a fresh copy of an operating system. Base images normally include
tools (such as yum, rpm, apt-get, dnf, microdnf) necessary to install
packages and make updates to the image over time. While base images can
be "hand crafted,” in practice they are typically produced and published by
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open source projects (such as Debian, Fedora, or CentOS) and vendors
(such as Red Hat). The provenance of base images is critical for security. In
short, the sole purpose of a base image is to provide a starting place for
creating derivative images.

What is the Red Hat Universal Base Image (UBI)?

Since provenance is a concern when using container base images, just
pulling the latest upstream code does not guarantee security, since
regressions and new CVEs are often introduced without notice. A trusted
image must be downloaded from a trusted source.

The objective of the Red Hat Universal Base image is to provide the highest
quality and most flexible base container image available. UBl images are
created so container images can be built on a foundation of official Red Hat
software that can be freely shared and deployed.

Container Container

App App

.
H Language
H runtimes

H Language
runtimes

Red Hat Universal
Base Image

Red Hat Universal
Base Image

Red Hat platform

Figure 9.3: UBI Image in Relation to the Platform

The types of UBIl image that can be used to build applications on include the
following:
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« Base Images — Derived from RHEL, a Red Hat Universal Base image
release offers three main types of base images:

+ ubi: A standard base image built on enterprise grade packages
from RHEL. Good for 80% of users’ needs

+ ubi-minimal : When users are sensitive to size, this is the image
to use. Built on microdnf, it provides the smallest on-disk size

 ubi-init: This image allows users to easily run multiple services
(mysql, httpd) in a single container. It allows a user to leverage
the knowledge built into systemd unit files without having to
figure out how to start the service

« Language Runtime Images — These are ready-to-run container
images, where a user only needs to add their application code. A set of
language runtime images is provided for UBI 7 and UBI 8. These
include:

« UBI7 — php-72, nodejs-8, ruby-25, python-27, python-36

« UBI 8 — dotnet-21-runtime, perl-526, php-72, nodejs-10, ruby-
25, python-27, python-36

All UBIl images are configured to access dedicated YUM repositories that
offer RHEL RPM packages. These repositories include the latest versions of
a set of freely available RPMs that users can access to rebuild container
images anytime they want. These repositories, and broader usage of the UBI
images, do not require a Red Hat subscription. Attributes of these
repositories include :
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« By default, only the latest RPM for each package are provided

« If users need access to historic RPMs, they will need to
synchronize them themselves

Advantages of the Red Hat UBI

The Red Hat UBI content follows the Red Hat Enterprise Linux schedule.
New versions of the Red Hat Universal Base Image are released whenever
there is a new release of RHEL. Building on UBI is a safe choice because
updates will be received for the life cycle of the underlying RHEL content.

New container images built are governed by the Red Hat Image Updates
Policy. This includes images built for critical CVE's and during releases. Also,
a YUM repository is provided with the latest set of RPMs for any given
release. This will allow users to update container images during rebuilds,
ensuring that the latest Errata (Security, Bug Fixes, Enhancements) is
picked up and applied.

UBI Images come from a known, trusted source — the Red Hat Image
Registry. While git repositories are used to store source code, image
registries store the binary files that comprise a container image. The registry
is fronted by a publicly facing web interface that provides detailed
information on the security posture of the image, including a simple health
index (letter grade) for quick reference. Figure 9.4 is a screenshot from the
Red Hat container registry showing the tag history of the UBI 7 image.
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http://localhost:9000/https%E2%80%89://access.redhat.com/containers/?tab=tags%23/registry.access.redhat.com/ubi7/ubi

ubi7/ubi
Red Hat Universal Base Image 7
by Red Hat, Inc. | in Product Red Hat Universal Base Image

Overview Get This Image Tech Details Support Tags

Show images built for: PPCG4LE (15) S390X (15)

Tag Name Date Pushed Image Advisory @
78-255 13 days ago ¥ RHEA-2020:1237
77-358 a month ago ¥ RHBA-2020:0888
7.7-310 2 months ago ¥ RHBA-2020:0410
7.7-2141580117713 2 months ago ¥ RHBA-2020:0300

Health Index @

All

All

Al
All

Figure 9.4: UBI Image on the Red Hat Container Registry

Hardening Pipeline Flow

Just as in the application pipeline, hardening images against a known

compliance baseline can be built using OpenShift mechanisms (s2i, Docker

build) or other open source tools such as podman and buildah.
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Figure 9.5: Cl/CD Base Image Hardening Pipeline Using UBI

After the candidate image has been created, it is pushed into the enterprise
image registry. Hardening has been applied; however, the image is not yet
considered secure until it passes the upcoming scans.

OpenSCAP compliance and vulnerability scans are run against the image,
just as they were in the application Cl/CD pipeline. The scans can be
performed from a bastion host or run by a custom container as an agent
within Jenkins.

In this pipeline diagram the compliance and vulnerability gates are explicitly
depicted. The acceptable compliance level is a program level standard; in
this example we are setting the threshold to require 80% of all checks to
pass. In addition to simply failing the pipeline, the gate stage can be
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implemented such that the pipeline is paused and the appropriate people
are notified to look at the results and determine whether the pipeline should
continue or be terminated.

The following is an example using the oscap-docker command line to run a
RHEL 7 STIG compliance scan against an image based upon the Red Hat
UBI 7 base image:

$ sudo oscap-docker image \
S{ENTERPRISE_REGISTRY}/S{NAMESPACE}/ubi-openjdk:latest \
xccdf eval —--profile \
xccdf_org.ssgproject.content_profile_stig-rhel7-disa \
—--report report.html \
/usr/share/xml/scap/ssg/content/ssg-rhel7-ds.xml

There are many profiles available, such as the RHEL 8 STIG, PCI-DSS, and
HIPAA, along with a UBI8 base image. The vulnerability gate in this example
is configured to fail the pipeline if there are any vulnerabilities detected,
regardless of severity. This could similarly be updated to pause the pipeline
until the results are examined by a security professional. Any third-party
security tools can be run with similar gates in place for evaluating their
results.

At this point in the pipeline, the image is considered secured, however
additional tests can be run to verify that basic functionality of the image is
still intact. The smoke test phase verifies that the image comes up and
functions as expected. Since this pipeline is building a base image for
OpendDK, the smoke test simply calls java -version to verify the java
executable is accessible from the path. Once the smoke test passes, the
image is ready for general consumption by marking it as a golden image.
This is done by updating the tag of the image within the enterprise image
registry.
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The hardening pipeline can be started by events other than changes to the
image source code. Consider the situation where a new vulnerability is
discovered and is fixed by the latest UBI image in the Red Hat container
registry. In this situation, the pipeline can be manually started (or started via
a hook) in order to incorporate the latest UBI image and incorporate the fix
into the hardened base image.

Many third-party container security tools such as Twistlock also perform
continuous scans of images running within an OpenShift or Kubernetes
cluster. If these tools detect a potential problem, this can also be used as a
hook to initiate the hardening pipeline or log a trouble ticket that can be
resolved by a developer and start the pipeline.
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List of Acronyms



Acronym/ Term Explanation of acronym / definition Chapter #

3PAO Third-Party Assessment Organization 1 (Risk)

AC Access Control 1 (Risk)
ACL Access Control List 6 (NetSec)
ACME Automatic Certificate Management Environment 8 (ESM)
ACSC Australian Cyber Security Centre 1 (Risk)
AES Advanced Encryption Standard 2 (CoreOs)

ANSS Age.nce Nationale de. la Sécurité des Systemes d'Information 1 (Risk)
National Cybersecurity Agency of France

API Application Programming Interface 2 (CoreOs)
AT Awareness and Training 1 (Risk)
ATO Authority To Operate 1 (Risk)

AU Audit and Accountability 1 (Risk)
AWS Amazon Web Services 2 (CoreQOS)
AZ Availability Zone 6 (NetSec)
CA Certificate Authority 4 (Kube)
CAC Common Access Card 5 (IAM)
CBC Cipher Block Chaining 2 (Core0OS)
CcC Common Criteria 1 (Risk)

CD Continuous Deployment O (Intro)
Ceph RBD Ceph Rados Block Device 3 (Cont)
cgroup Control Group 3 (Cont)

Cl Continuous Integration O (Intro)
CLI Command Line Interface O (Intro)
CM Configuration Management 1 (Risk)
CMVP NIST Cryptographic Module Validation Program 1 (Risk)
CNCF Cloud Native Computing Foundation 6 (NetSec)
CNI Container Networking Interface 6 (NetSec)
CNO Cluster Network Operator O (Intro)
COBIT Control Objectives for Information and Related Technologies 1 (Risk)

CP Contingency Planning 1 (Risk)
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CPU
CSPRNG
CVO
COTS
CR
CRI-O
CRC
CVE
DISA
DoS
DDoS
DHCP
DN
DNS
DoD
DTLS
EBS
ECDSA
EFK
ELS
EUS
fapolicyd
FDE
FedRAMP
FIPS
FISMA
GCP
GID
gRPC
HA
HIPAA

Central Processing Unit

Cryptographically Secure Pseudo-Random Number Generator
Cluster Version Operator

Commercial Off-the-Shelf

Custom Resource

Container Runtime Interface for Open Container Initiative
Code Ready Containers

Common Vulnerability and Exposures

Defense Information Systems Agency

Denial of Service

Distributed Denial of Service

Dynamic Host Configuration Protocol

Domain Name

Domain Name Server

(United States) Department of Defense

Datagram Transport Layer Security

Elastic Block Storage

Elliptic Curve Digital Signature Algorithm
ElasticSearch, Fluentd and Kibana

Extended Life Cycle

Extended Update Support

File Access Policy Daemon

Full Disk Encryption

Federal Risk and Authorization Management Program
Federal Information Processing Standards

Federal Information Systems Management Act
Google Cloud Platform

Group ID

gRPC Remote Procedure Call (recursive acronym)
High Availability

Health Insurance Portability and Accountability Act

2 (CoreQS)

8 (Encryption)

O (Intro)
1(Risk)

6 (NetSec)
2 (CoreOs)
O (Intro)

3 (Cont)
1(Risk)

6 (NetSec)
6 (NetSec)
2 (CoreOs)
5 (IAM)

2 (CoreQS)
8 (ESM)
1(Risk)

2 (CoreOS)
8 (ESM)

4 (Kube)
1(Risk)
1(Risk)

2 (CoreOs)
2 (CoreOs)
1(Risk)

2 (CoreOs)
1(Risk)

2 (CoreOs)
3 (Cont)

6 (NetSec)
6 (NetSec)
1(Risk)
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HMAC
HSM
HSTS
HTML
HTTP
HTTPS
IA (NIST)

Keyed-hash Message Authentication Code
Hardware Security Module

HTTP Strict Transport Security

Hypertext Markup Language

Hypertext Transfer Protocol

Hypertext Transfer Protocol Secure
Identification and Authentication
Information Assurance

Identity and Access Management

Identity

Identity Provider

Internet Protocol

Internet Protocol version 6

Internet Small Computer System Interface
Information Security Manual

Information Systems Security Association
Integrated Development Environment
Identity Management

Identity Provider

Commission électrotechnique internationale

International Organization for Standardization

Input / Output

Internet Protocol

Inter-Process Communication

IP Security

Incident Response

Information Systems Security Association
Independent Software Vendor
Implementation Under Test

Joint Authorization Board

Java Archive

5 (IAM)

8 (ESM)

8 (ESM)

9 (Cl/CD)
6 (NetSec)
6 (NetSec)
1(Risk)

1 (Risk)

5 (IAM)

3 (Cont)

5 (IAM)

1 (Risk)
1(Risk)

3 (Cont)
1(Risk)

1 (Risk)

O (Intro)

5 (IAM)

5 (IAM)

1 (Risk)
1(Risk)

2 (Core0S)
6 (NetSec)
3 (Cont)

8 (ESM)

1 (Risk)
1(Risk)

O (Intro)
1(Risk)

1 (Risk)

9 (Cl/CD)
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JSON
JVM
JWT
KASLR
KMS
LDAP
LTS
LUKS
MAC
MAC
MA
MCO
MIP
MP
MITM
mTLS
MCS
NAT
NBDE
NCCoE
NIST
NSA
NSS
NTP
OAuth
OCl
OCP
OES
OIbC
OLM
OpenSSH

JavaScript Object Notation

Java Virtual Machine

JSON Web Token

Kernel Address Space Layout Randomization
Key Management Service

Lightweight Directory Access Protocol
Long-Term Support

Linux Unified Key Setup

Media Access Control

Mandatory Access Control

Maintenance

Machine Config Operator

Modules in Process

Media Protection

Man-In-The-Middle

Mutual TLS

Multi-Categories Security

Network Address Translation
Network-Bound Disk Encryption

National Cybersecurity Center of Excellence
National Institute of Standards and Technology
National Security Agency

Network Security Services

Network Time Protocol

Open Standard for Authorization

Open Container Initiative

OpenShift Container Platform

Operators of Essential Services

OpenlD Connect

Operator Lifecycle Manager

Open Secure SHell (tool)

2 (CoreOS)
6 (NetSec)
5 (IAM)

2 (CoreOS)
8 (ESM)

5 (IAM)

9 (Cl/CD)
2 (CoreOS)
6 (NetSec)
3 (Cont)
1(Risk)

O (Intro)

1 (Risk)

1 (Risk)

6 (NetSec)
6 (NetSec)
3 (Cont)

6 (NetSec)
2 (Core0OS)
1 (Risk)

O (Intro)

3 (Cont)

1 (Risk)

8 (ESM)

5 (IAM)

2 (CoreOs)
O (Intro)

1 (Risk)

5 (IAM)

O (Intro)

1 (Risk)

295



OpenSSL
OpenSCAP
oS

OTA
OTP
OVAL
OVN
(O)V/S
OWASP
PCI-DSS
PE
PKCS
PKI

PL

PID

PIV
PoAM
PRNG
PS

PSP
QA

RA
RBAC
RHCOS
RHEL
RMF
RNG
RPM
RSA

S2|

SA

Open Secure Sockets Layer (library)

Open Security Content Automation Protocol
Operating System

Over-the-Air

One-Time Password

Open Vulnerability Assessment Language
Open Virtual Network

OpenVSwitch

Open Web Application Security Project
Payment Card Industry Data Security Standard
Physical and Environmental Protection
public-key cryptography standards

Public Key Infrastructure

Planning

Process Identifier

Personal Identity Verification

Plan of Action and Milestones
Pseudo-Random Number Generator
Personnel Security

Pod Security Policies

Quiality Assurance

Risk Assessment

Role-Based Access Control

Red Hat Enterprise Linux CoreOS

Red Hat Enterprise Linux

Risk Management Framework

Random Number Generator

RPM Package Manager (a recursive backronym)
Rivest-Shamir-Adleman

Service to Image

Service Account

1 (Risk)

O (Intro)

2 (CoreOS)
6 (NetSec)
5 (IAM)
1(Risk)

6 (NetSec)
6 (NetSec)
9 (Cl/CD)

1 (Risk)

1 (Risk)
1(Risk)

8 (ESM)

1 (Risk)

3 (Cont)

5 (IAM)

8 (ESM)

8 (ESM)

1 (Risk)

4 (Kube)

9 (Cl/CD)

1 (Risk)

4 (Kube)

2 (CoreOS)
2 (CoreOS)
1 (Risk)

8 (ESM)

8 (ESM)
9 (Cl/CD)
4 (Kube)
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SA
SAML
SC
SCAP
SCC
SCTP
SDN
seccomp
SELinux
SHA

Sl

SIEM
SLA
SLO
SNI
SOC
SP 800
SPIFFE
SRTM
SR-I0V
SSH
SSL
SSPI
SSSD
STIG
TAR
TCP
TLS
TMPFS
TPM
UBlI

System and Services Acquisition
Security Assertion Markup Language
System and Communications Protection
Security Content Automation Protocol
Security Context Constraints

Stream Control Transmission Protocol
Software Defined Network

Secure Computing mode

Security Enhanced Linux

Secure Hash Algorithm

System and Information Integrity
Security Information and Event Management
Service Level Agreement

Single LogOut

Server Name Indication

Security Operations Center

Special Publication 800-series

Secure Production Identity Framework for Everyone

Security Requirements Traceability Matrix
Single Root I/O Virtualization

Secure SHell

Secure Socket Library

Security Support Provider Interface
System Security Services Daemon
Security Technical Implementation Guides
Tape ARchiver (compression tool)
Transmission Control Protocol

Transport Layer Security

Temporary File System

Trusted Platform Module

Universal Base Images

1(Risk)

5 (IAM)
1(Risk)
1(Risk)

3 (Cont)

6 (NetSec)
6 (NetSec)
3 (Cont)

3 (Cont)

5 (IAM)
1(Risk)

4 (Kube)

7 (Audit)

4 (Kube)

4 (Kube)

7 (Audit)
1(Risk)

6 (NetSec)
1(Risk)

6 (NetSec)
1(Risk)

1 (Risk)
1(Risk)

5 (Ident)
1(Risk)

9 (Cl/CD)
6 (NetSec)
2 (CoreOS)
8 (ESM)

3 (CoreQS)
O (Intro)
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uiD
UDP
URI
URL
USGv6
uTsS
VS Code
VIP

VF

VM
vTPM
WWW
X509
XCCDF
YAML
YUM
ZAP

User Identity
User Datagram Protocol
Uniform Resource Identifier

Uniform Resource Locator

United States Government acquisition standards for IPv6 equipment

UNIX Time Sharing

Visual Studio Code

Virtual IP

Virtual Function (in scope of SR-IOV)

Virtual Machine

Virtual Trusted Platform Module

World Wide Web

standard defining the format of public key certificates
eXtensible Configuration Checklist Description Format
Yet Another Markup Language

Yellowdog Updater, Modified

Zed Attack Proxy

3 (Cont)

6 (NetSec)
7 (Audit)

2 (Core0S)
1(Risk)
3(Cont)

O (Intro)

6 (NetSec)
6 (NetSec)
3 (Cont)

8 (Encrypt)
5 (IAM)
1(Risk)

1 (Risk)

9 (Cl/CD)
9 (Cl/CD)
9 (Cl/CD)
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