
Scalable 
Kubernetes 
Infrastructure 
for AI Platforms
 Kubernetes-Native Training  
 and Deployment

 Alex Corvin, Taneem Ibrahim
 & Kyle Stratis

REPORT

Compliments of



Try Red Hat OpenShift AI in 
the Developer Sandbox

red.ht/openshift-ai-devs

https://red.ht/openshift-ai-devs


Alex Corvin, Taneem Ibrahim,
and Kyle Stratis

Scalable Kubernetes
Infrastructure for

AI Platforms
Kubernetes-Native Training

and Deployment



979-8-341-60816-0

[LSI]

Scalable Kubernetes Infrastructure for AI Platforms
by Alex Corvin, Taneem Ibrahim, and Kyle Stratis

Copyright © 2025 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Nicole Butterfield
Development Editor: Jill Leonard
Production Editor: Christopher Faucher
Copyeditor: nSight, Inc.

Proofreader: O’Reilly Media, Inc.
Interior Designer: David Futato
Cover Designer: Susan Brown
Illustrator: Kate Dullea

February 2025:  First Edition

Revision History for the First Edition
2025-02-13: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Scalable Kuber‐
netes Infrastructure for AI Platforms, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Red Hat. See our statement
of editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence


Table of Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
What Is MLOps?                                                                                  2
Why Use Kubernetes for Your MLOps Platform?                           5

2. Model Development on Kubernetes. . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
Overview of LLM Customization Techniques                                 8
Kubernetes-Native Model Training Tools                                      10
Managing Compute Resources for Training                                  12

3. Making Training Repeatable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
Retraining and the Model Development Lifecycle                       15
Tracking Model Versions                                                                  17
Automating Model Training                                                            18
GitOps for Model Training Pipelines                                             20

4. Model Deployment and Monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . .  23
Overview of LLM Serving                                                                23
Using a Model-Serving Platform                                                     24
Diving Into LLM-Serving Runtimes with vLLM                          28
Monitoring and Keeping Track of Your Models                           29

5. Responsible AI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
Data Safety and Transparency                                                         33
AI Guardrails                                                                                      34

6. Summary and Outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37
Personalized Healthcare Chatbot                                                    37
Future Technology Outlook                                                             41

iii





CHAPTER 1

Introduction

AI, especially generative AI, has followed a similar adoption cycle
to many new technologies. Those organizations producing cutting-
edge technologies and those in or adjacent to the tech space typically
have been quicker to adopt this technology, while other industries
have had a slower rate of adoption. However, more recent advance‐
ments have helped business leaders realize that they must figure out
how to leverage generative AI for their businesses or risk being left
behind by their competitors.

Now, enterprises are expending more resources to leverage AI for
their businesses. This often takes the form of teams of data scientists
implementing proofs of concept (POCs) of AI-based applications
for their businesses.

A particularly common proof of concept project in the enterprise
is building chatbots. Typically, these projects make use of retrieval-
augmented generation (RAG), combining proprietary data with off-
the-shelf large language models (LLMs) to give the chatbot expertise
on a specific problem domain.

But these enterprises are often facing a difficult challenge: they
have POCs of AI-based applications for their businesses, but they
can’t move them into production. In fact, the vast majority of these
projects never make it to production.

To improve the success rate of these POCs and improve the
return on investment of AI initiatives in the enterprise, businesses
must develop a better understanding of the challenges that arise

1

https://oreil.ly/X1kML
https://oreil.ly/X1kML


when running AI-enabled applications in production. With this
understanding, leaders will be better able to architect solutions
for promoting POCs into production and managing their product
lifecycles.

Addressing and overcoming these challenges is at the core of the
relatively recent discipline of machine learning operations (MLOps).
This publication will walk you through why this is a critical next
step and how to leverage MLOps on Kubernetes.

In this report, we’ll unpack four fundamentals of building AI-
powered applications:

• Training models in the experimental phase•
• Making model creation repeatable and declarative•
• Operating models in production as a part of AI-powered•

applications
• Ensuring that models you create are trustworthy and built•

responsibly

This report will take a Kubernetes-centric approach, highlighting
projects that are built to be Kubernetes native and when used
together allow you to apply MLOps principles and practices to
building AI-powered applications.

What Is MLOps?
MLOps has its origin in the world of DevOps, a best-practice
development model that seeks to deliver high-quality software to
production quickly. It seeks to do this by bringing development
and operations roles closer together. This fosters collaboration and
shared knowledge across the software development and production
lifecycles while bringing awareness of production issues to the teams
and individuals best equipped to solve them. This approach requires
that developers concern themselves with how the software they
write performs in production and that they’re actively involved in
operating that software in production as well.

With the proliferation of AI/ML and an ever-increasing number
of models being created, MLOps has emerged as a new paradigm
for delivering high-quality models to production quickly, apply‐
ing DevOps principles to AI models and AI-powered applications

2 | Chapter 1: Introduction

https://oreil.ly/0QBop


instead of traditional software applications. However, MLOps
doesn’t just apply DevOps principles to the AI development lifecy‐
cle but builds upon them to define foundational best practices for
building and running AI-powered applications. A team implement‐
ing MLOps practices should adhere to the following core principles,
which are expanded upon and explained in-depth in the book
Designing Machine Learning Systems by Chip Huyen (O’Reilly, 2022):

Continuous integration and delivery (CI/CD)
A robust suite of CI/CD automation tools to repeatably build,
test, and deploy AI-powered applications.

Exploratory workflow orchestration
A robust data science workflow orchestration tool to automate
the end-to-end model development lifecycle from data prepara‐
tion through model training, tuning, and evaluation.

Reproducible artifacts
Artifacts from a given version of an intelligent application must
be made reproducible, and all components used to create these
artifacts must be versioned and well-documented.

Cross-team collaboration
Building AI-powered applications requires strong collaboration
between multiple roles consisting of, at a minimum, data engi‐
neers, data scientists, application developers, and operations
teams. MLOps emphasizes close communication and collabora‐
tion between these groups.

Model and data lineage
Model and data lineage along with other key metadata for an
intelligent application must be well tracked, especially for the
purpose of building trust in AI applications but also for debug‐
ging and explainability.

Monitoring
MLOps requires that AI-powered applications be monitored
across their production lifecycle. In addition to traditional
application monitoring, AI-powered applications must be
monitored for data distribution drifts, model degradation, bias,
compliance, and more. Because many models also use expensive
specialized hardware, such as GPU clusters, monitoring for the
efficient use of this hardware is critically important as well.

What Is MLOps? | 3

https://learning.oreilly.com/library/view/designing-machine-learning/9781098107956


Iteration-supporting process
MLOps processes must allow for frequent iterations through‐
out the development and production lifecycles of an intelligent
application. Data scientists must be able to train a model, eval‐
uate its performance, and quickly retrain the model based on
results of the evaluation. Similarly, models must be periodically
retrained after they are released to production in order to incor‐
porate new data in their training sets, as new data may diverge
from the original training data. This divergence can be caught
as it happens by adhering to the previously mentioned monitor‐
ing principle.

Now that we understand the foundational principles, let’s con‐
sider the AI development lifecycle. While this lifecycle can take
many forms, all tend to roughly follow this pattern (illustrated in
Figure 1-1):

Project initiation
Business stakeholders, application developers, data scientists,
and data engineers collaborate to identify the desired business
outcome for the intelligent application, the raw data that can be
used to build the model that will achieve this outcome, and the
architecture for how the resulting AI model will be integrated
into a software application to deliver the desired solution.

Data preparation
Data engineers and data scientists produce the necessary train‐
ing and tuning data artifacts upon which to build the model.
These artifacts do not need to be static: they could be real-time
data or database entries that are constantly updating from data
ingestion pipelines, for example.

Model experimentation
Data scientists consume the prepared feature data to create a
sufficiently performant model, frequently iterating on different
model architectures, training hyperparameters, and feature data
combinations.

Application integration
Application developers work closely with data scientists to inte‐
grate a trained model into application code, which will consume
the trained model via an API.

4 | Chapter 1: Introduction



Production service
The application is promoted to production, where it adds value
and is continuously iterated upon to improve its performance
and add new features.

Figure 1-1. This flowchart demonstrates the iterative nature of the AI
development lifecycle

Given the strong demand for a platform that enables this lifecycle
and MLOps best practices, it isn’t surprising that a dizzying number
of AI development platforms exist on the market today. This report
will dive into the open source Kubernetes container orchestration
platform, highlighting how it can be used across the AI develop‐
ment lifecycle to apply the foundational MLOps principles to your
workflows.

Why Use Kubernetes for Your
MLOps Platform?
Kubernetes has many strengths, which make it an excellent platform
on which to build and run AI-powered applications while adhering
to MLOps principles. Because Kubernetes applications are written
in a declarative manner, it allows teams to consistently produce
repeatable results when building AI models. This, combined with
built-in robust GitOps tooling, makes it very easy to version control
model training artifacts.

Creating models requires access to specialized hardware, and how
that hardware is used is often unpredictable and bursty in nature.
Kubernetes is able to abstract away the process of provisioning hard‐
ware resources such that a data scientist can focus on developing
the model instead of on configuring the hardware environment.
On the production side, running AI-powered applications requires
separately scaling different parts of the application, including the

Why Use Kubernetes for Your MLOps Platform? | 5

https://oreil.ly/Fjk7z


compute resources serving the backend model and frontend APIs
that provide a user access to the model. Because Kubernetes
abstracts away hardware provisioning, scaling different pieces of the
deployed application becomes easier.

In addition to manual scaling, Kubernetes allows users to automati‐
cally scale highly specialized and expensive compute resources. This
fine-grained resource management is critical for properly managing
costs.

Another consideration is specialized hardware such as accelerators,
particularly in large-scale training and tuning jobs, which can be
quite fragile. In a model training or fine-tuning job that requires
multiple days to execute, a hardware failure that forces you to restart
training can be quite costly. Kubernetes has self-healing features,
which, coupled with checkpointing support in common training
libraries, eliminate this problem, making Kubernetes a robust fault-
tolerant platform.

While many AI development platforms are tied to a specific cloud
platform, Kubernetes is able to run anywhere you need it. This
includes cloud providers, private datacenters, edge locations, and
hybrid configurations, which allow Kubernetes to serve as the single
deployment platform upon which to build your applications.

On the monitoring side, Kubernetes integrates with several mon‐
itoring tools such as Prometheus, DataDog, and Grafana, which
can help track performance and resource usage of models. This is
especially important for LLMs due to their size and cost to operate.
These deep integrations provide MLOps administrators with proac‐
tive monitoring and alerts to ensure that models run optimally for
critical AI workloads.

Finally, rolling out updates to models, especially LLMs, can be a
difficult and costly practice. Kubernetes simplifies this process with
features like rolling updates (which pushes updates incrementally)
and canary deployments, helping to minimize the downtime of
these models.

6 | Chapter 1: Introduction



CHAPTER 2

Model Development
on Kubernetes

In this chapter, we will provide an overview of prevailing technolo‐
gies and techniques for developing machine learning models using
Kubernetes as a compute platform. While we will focus on specific
techniques relevant to large language models (LLMs) and generative
AI, many of the techniques we discuss will apply to traditional
predictive models and other architectures as well.

Historically, models have required extensive data preparation to
curate high-quality, labeled datasets that sufficiently capture the
problem domain. Creating these datasets was very labor-intensive
and expensive. More recently, advances in computational power,
improved algorithms for distributing training across compute
resources, and widespread open access to training data have all
paved the way for extremely powerful general-purpose models to be
built without heavy data curation.

Generally, foundation LLMs are created via self-supervised learning,
a type of unsupervised learning, on extremely large, unlabeled data‐
sets. For LLMs, this results in a model that understands patterns in
human language and can predict the most likely output that should
follow a given input. These foundational models exhibit usefulness
across a wide breadth of tasks, but practitioners often need to adapt
these pretrained base models to some specific use case.

There are several prevailing techniques for adapting these founda‐
tional models, which differ from each other in their intended use

7



cases, ease of implementation, and costs of implementation. Col‐
lectively, we will refer to these approaches as model customization
techniques.

Overview of LLM Customization Techniques
The LLM customization space, like much of generative AI, is evolv‐
ing rapidly with new techniques being invented regularly. In general,
customization is achieved through one or more of the following
fundamental techniques:

• Customizing an existing model’s output by leaving the model•
unchanged but carefully constructing the input to get a
desired result. Examples of this include prompt engineering and
retrieval-augmented generation (RAG).

• Combining individual models to achieve an output that is more•
desirable than that from a single model. One example of this is
the mixture-of-agents approach.

• Retraining an existing model using curated data specific to a•
given task. This is fine-tuning.

Novel model customization techniques are likely to be achieved
through new algorithms for implementing these fundamental tech‐
niques more efficiently or through creatively combining these tech‐
niques, as in the case of retrieval-augmented fine-tuning (RAFT).

In the rest of this section, we will provide a primer on two of the
most prominent approaches (as of this writing) to model customiza‐
tion: RAG and fine-tuning.

Retrieval-Augmented Generation
A fundamental limitation of pretrained foundation models is that
they possess “knowledge” only of the data that they were trained on.
If you ask a model about a piece of data that it was not trained on, it
will fail to give the desired answer. RAG is a technique that extends
an existing model’s knowledge by passing relevant contextual data as
input to the model at query time.

So how does RAG work? Generally, when a user queries a model,
a database (typically a vector database) is queried for information
relevant to the input query. The RAG system parses the results and

8 | Chapter 2: Model Development on Kubernetes

https://oreil.ly/vw3kM
https://oreil.ly/feMXE
https://oreil.ly/2L8-k


uses an algorithm like cosine similarity to choose the results most
relevant to the query. Once those are chosen, they are added to the
original query as contextual information and sent on to the model
in a format along the lines of “using information found only in this
input document, answer this question for me.” Figure 2-1 illustrates
a hypothetical RAG system.

Figure 2-1. An illustration of a generalized RAG system showing
the interactions between the user, retrieval system, vector database,
and model

The chosen retrieval and ranking algorithm is critically important to
the performance of the RAG system. If no relevant contextual data
is retrieved by the system, the model will lack the knowledge needed
to give the desired answer to the user.

Even though RAG requires a retrieval system and additional data
storage between the user and the model, it has a number of benefits.
Because RAG supplements the model’s knowledge at runtime, it
requires less knowledge to be baked into the model and opens up
the possibility of using a smaller model that is cheaper to serve
to users while simultaneously allowing users to incorporate rapidly
changing data like stock prices on the fly. RAG can also reduce the
time to achieve value with an LLM, because it doesn’t require a
lengthy retraining process to work.

On the other hand, the knowledge given to a model via RAG is tran‐
sient, and only exists for a single query. You also have to carefully
craft the input prompt to get the kind of output you’re interested in.
However, this sort of customization also has its limits. If you want to
make knowledge changes persistent or fully customize the format of
the model’s output, retraining the foundation model is required.

Overview of LLM Customization Techniques | 9

https://oreil.ly/7uOIh


Model Fine-Tuning
Training a foundation model is notoriously expensive and time-
consuming, which isn’t an option for even the largest enterprises.
Instead, we can make use of a technique called fine-tuning. With
fine-tuning, you create a high-quality, labeled dataset that is specific
to your domain-specific task, knowledge, or desired output format.
You can then use that dataset to adjust a pretrained model in a
fraction of the time and with a fraction of the data that would be
required for training from scratch.

The fine-tuned model will then have your desired knowledge and
behavior baked in, allowing your production architecture to avoid
the complexities required by techniques like RAG. However, fine-
tuning requires knowing how to train a model, the time to curate
a training dataset large enough to influence a model, and the some‐
times high compute cost to perform the training itself.

A number of techniques exist to optimize the compute cost of
fine-tuning, such as parameter-efficient fine-tuning (PEFT) and
low-rank adaptation (LoRA). Both of these techniques work by
training only a subset of the pretrained model’s weights and biases.

While this is complex, there are many tools and entire platforms
available to help with training and fine-tuning models, such as
InstructLab and Hugging Face’s sft_trainer, with many of them
available within the open source Kubernetes ecosystem.

Kubernetes-Native Model Training Tools
While many training tools and platforms are available, at a funda‐
mental level they all provide easy access to the compute power
necessary to train and fine-tune models. When evaluating a training
tool or platform, the following requirements should be considered:

• Integration with the training framework(s) (distributed or•
otherwise) that data scientists or data science teams use and
are comfortable with (e.g., PyTorch, TensorFlow, etc.).

• Support for training/fine-tuning algorithms that your team•
wants to use.

• Access to hardware optimizers, such as accelerators (e.g.,•
GPUs), specialized network devices, and specialized storage
providers with multi-write-capable storage.

10 | Chapter 2: Model Development on Kubernetes

https://instructlab.ai
https://oreil.ly/9f4mP


• Integrations with the development environments data scientists•
or data science teams are already using. A tool that effectively
abstracts away Kubernetes so that the data scientist or team
doesn’t need to manage it is ideal.

In the following subsections, we will explore open source tools that
meet these requirements and have strong community adoption.

Ray
Ray is a framework that enables users to scale their training
and fine-tuning processes up from single machines to clusters of
machines, and can run natively on Kubernetes via the KubeRay
operator. It seamlessly integrates with PyTorch and other frame‐
works via Ray Train and has extensive support for accelerators. It
also comes with a dashboard that provides key monitoring informa‐
tion to end users.

An operator is an extension to Kubernetes that helps
to manage Kubernetes applications by using custom
resources to automate the application’s lifecycle.

Ray’s biggest strength is its ease of adoption by data scientists who
don’t know Kubernetes well, but it comes with the downside of
increased overhead through the management of Ray clusters when
compared to options that have a more “raw” interface to Kubernetes.
It also doesn’t always scale well to extremely large-scale training
jobs.

Kubeflow Training Operator
Kubeflow is a community-managed open source ecosystem of
Kubernetes components that support the full AI lifecycle. A part
of that ecosystem, the Kubeflow Training Operator (KFTO) is a
Kubernetes-native operator that allows users to use Kubernetes for
distributed training and fine-tuning of large models. Its software
development kit (SDK) allows for easy integration into existing
environments and code and has extensive support for common
frameworks like PyTorch.

KFTO accelerator support is tied to the chosen training framework,
so it supports anything that the training framework and Kuber‐
netes support and can scale to any level that the framework and

Kubernetes-Native Model Training Tools | 11

https://oreil.ly/eu-Ll
https://oreil.ly/H7Xgz
https://oreil.ly/dLTwc
https://oreil.ly/TrRP-
https://oreil.ly/-lPOg
https://www.kubeflow.org


Kubernetes are capable of scaling to. Unlike Ray, KFTO is a thin
layer on top of the underlying Kubernetes objects, which introduces
very little compute overhead. The flipside to that, though, is that
more of the Kubernetes details are exposed to the user, which may
be confusing for data scientists and developers who do not need to
know these details.

Native Training Framework Integration
with Kubernetes
Most training frameworks have framework-specific tooling for
integrating with Kubernetes to provide computational resources.
PyTorch, for example, has a universal job launcher called TorchX
that includes Kubernetes support via its scheduler. While this kind
of solution is the most lightweight and is the easiest for data scien‐
tists to adopt, it is less declarative and thus doesn’t lend itself as well
to administration by MLOps teams.

Another potential downside is that these tools are framework-
specific, so usage won’t necessarily scale in large organizations with
several data science teams using different frameworks. These native
integrations are best suited for small teams of data scientists during
experimentation phases.

Typically, once a model is trained or fine-tuned, you
will want to evaluate its performance. Many existing
model evaluation tools that data scientists use outside
of Kubernetes can also be used when Kubernetes is
used as a training platform.

Managing Compute Resources for Training
While the tools described in the previous section allow you to
train and fine-tune across many computational resources, this often
requires extensive and costly hardware resources. Enterprises must
pay particular attention to managing the cost incurred during
training or fine-tuning. A robust management system should be
able to do the following:

• Facilitate the creation of job queues so that requests for com‐•
pute hardware get serviced as soon as the hardware becomes
available.

12 | Chapter 2: Model Development on Kubernetes



• Assign resource quotas to groups of users in order to constrain•
how many resources a given group can consume.

• Share resource quotas between groups when individual groups•
need to burst and there are free resources.

• Manage request priorities for resources and priority-based job•
preemption.

• Provide auditability and reporting on resource management at•
the model, job, and team levels.

• Allow all of these functions to be centrally managed by IT teams•
while maintaining transparency for users.

There are currently two major open source projects in this space:
Kueue and Volcano. Both projects are Kubernetes native and have
strong community adoption. They also have support for manag‐
ing resources of various types, like Ray clusters, KFTO jobs, and
PyTorch training jobs.

While these projects offer similar functionality, they do have some
key differences. Kueue is an official Kubernetes special interest
group project and is thus “blessed” by the wider Kubernetes com‐
munity. It is based on the design principle of delegating functional‐
ity to existing Kubernetes components when applicable, and because
of this, Kueue is fairly lightweight.

Volcano, on the other hand, replicates some existing Kubernetes
functionality, giving it more overhead but allowing it to be a more
holistic and better-integrated solution. It is also more mature than
Kueue and as of this writing offers more capabilities.

Once a data science team has a model and training procedure it
is ready to send to production, it will be necessary to periodically
retrain the model while keeping track of the datasets that went into
each new version of the model. In Chapter 3, we will discuss why
periodic retraining, model versioning, and dataset versioning are
necessary along with tools to help with these production workflows.

Managing Compute Resources for Training | 13

https://oreil.ly/JZQ_0
https://oreil.ly/cCQQJ




CHAPTER 3

Making Training Repeatable

In Chapter 2, you learned about techniques for customizing a
model, including fine-tuning, a special case of model training. Once
you’ve fine-tuned or trained your model for the first time, you might
be tempted to think that you are done with model development and
all you have left is to evaluate and deploy your model.

You’d be half right. But because the data that informs the model
will likely change over time, the model must be regularly retrained
throughout its lifetime to ensure that it can continue to deliver
value. In this chapter, you will dive into the AI model lifecycle,
learning how to track model versions, automate model training, and
implement GitOps for model training pipelines.

Retraining and the
Model Development Lifecycle
The world changes. The data that we use to describe the real world,
then, must change too. Consequently, if the data changes, then any
models that attempt to model a problem in the real world must also
change.

Since models in production are static, over time the input data that
a given model will process in production for inference requests will
differ from the data that the model was trained on. This variabil‐
ity can come from any number of sources, such as changing user
behavior over time, seasonality effects in the data, changes to the
input data format, etc. The phenomenon is called data drift.

15



Data drift isn’t the only reason to retrain a model, however. Retrain‐
ing is a good option when a metric that is monitored in production
(such as accuracy, model responsiveness, compute resources, etc.)
falls outside its optimal range.

When and how often a model should be retrained are two key con‐
siderations, and they depend heavily on your use case and training
data. There are two main choices here: either regularly retrain the
model on some fixed cadence, or retrain the model on demand.

Retraining a model at a fixed cadence can be costly if the cadence
is rapid or if the retraining doesn’t actually show any improvement.
This method assumes that the data changes according to some pre‐
dictable pattern that can be detected at a chosen retraining cadence.
If retraining doesn’t show any improvement, it’s possible that the
data isn’t changing in such a way to be captured by the regular
cadence.

The other option is to retrain your model on demand. This ensures
that models are not retrained unnecessarily, but it requires reliable
monitoring of the performance of the current version of the model
(discussed in Chapter 4) and well-defined thresholds for when the
performance has sufficiently degraded.

The full lifecycle of a model, then, looks something like Figure 3-1.

Figure 3-1. The full lifecycle of an AI model

16 | Chapter 3: Making Training Repeatable



In practice, this is a never-ending cycle, which repeats most often
from the evaluation and monitoring stages, where unacceptable per‐
formance is typically discovered.

Where Figure 1-1 was focused on the model development cycle
(stage 2), Figure 3-1 zooms out to view the entire lifecycle of a
model. The lifecycle starts with gathering data, continues through
developing training code, executing the training job, evaluating the
trained model, promoting the model to production, and monitoring
the served model.

Crucially, this lifecycle can repeat at any stage (with the exception
of training code development, which typically remains static), most
commonly after the evaluation and monitoring stages (4 and 6).
From those, it’s common to discover that either the training job
needs to be run again, or that more or higher quality data needs to
be collected. If more data is to be collected, typically the existing
training code can be used as-is. In this case, stage 3 would follow
stage 1.

Tracking Model Versions
While they iterate on developing a model, data scientists will run
many experiments by varying the dataset they use to create the
model, the model’s architecture, the hyperparameters used for train‐
ing the model, and more. Even after the initial handoff of the model
to production, future retraining cycles of the model will yield new
variants.

Enterprises need robust solutions for tracking all of these versions of
a given model. While version control systems have been table stakes
for traditional software projects for decades now, model version
control systems are still in their infancy despite the heavy reliance
on models by enterprises of all sizes.

Model version tracking benefits the whole enterprise, from unlock‐
ing the ability of data scientists to recreate previous experiments,
share their experiments with colleagues, and revert to a model from
a previous experiment, to enabling model auditing and ensuring
responsible AI use. For example, in order to explain a given model’s
results and how it was created, it is necessary to know which version
of a model was served in production at what time and how that

Tracking Model Versions | 17



model was created, including the data sources that went into the
model.

More and more often, enterprises use a centralized model registry
throughout the model’s lifecycle, and this is rapidly becoming a
recognized best practice. During model training and development,
model training code should integrate with the model registry to
register each subsequent version of the model as a distinct model
artifact. Alongside the model artifact, model training code should
register metadata about the training data and code that was used to
create the model. The model registry should also be integrated at
model deployment and monitoring stages, which will be discussed
in Chapter 4.

Many training platforms that are available today offer model regis‐
tries as part of their product lineup. It is important to choose a
platform with a strong model registry that is well integrated into the
platform’s distributed training engine.

The Kubeflow project offers a powerful integrated solution, where
the Kubeflow Training Operator, Kubeflow Pipelines, Katib, and the
Kubeflow Model Registry can be used together to track training
results in a central database. Similarly, the MLflow project offers a
robust model registry solution that can be combined with MLflow
Runs and Experiments to streamline tracking of model versions.

Today, proper model versioning tends to require behavior change
by data scientists to deliberately integrate model version tracking
into their training code and workflows. As projects like MLflow
and Kubeflow evolve and become better integrated with frameworks
like PyTorch, you can expect model version tracking capabilities to
integrate seamlessly out of the box.

Automating Model Training
Training a model is just like any other regularly repeated computing
activity: it must be automated. Failure to do so leads to several
negative outcomes:

• Wasted human resources by having to manually rerun training•
• Unpredictability in model retraining cadence•

18 | Chapter 3: Making Training Repeatable

https://kubeflow.org
https://oreil.ly/NgK4E
https://mlflow.org


• Inconsistency in the model’s performance through discrepan‐•
cies (deliberate or accidental) in the model training process

Initial model development, then, should not be considered complete
until the training process is automated end to end. A fully featured
automated training process should include at the very least:

• Input parameters that specify any variables that typically need•
to be tweaked (e.g., a version identifier for the training code or
training data, or hyperparameters—parameters that define how
training is done—for the training job)

• Any necessary data preparation or preprocessing to collect data•
from any storage locations and prepare it for training

• Fetching and executing the training job•
• Storing the model and related artifacts in a chosen storage•

endpoint
• Registering the model and related artifacts in the model registry•
• Evaluating the performance of the trained model•

Another feature that is nice to have but by no means essential is
an automated process that promotes a trained model to production
or any other post-training steps if the model meets some minimum
performance thresholds.

For many teams, promoting a model to production
without any human oversight may not be appropriate.
When evaluating a tool that has this feature, be sure to
weigh the trade-offs of not having human review of a
trained model’s metrics against keeping a human in the
loop.

This process (and the software that implements it) is often referred
to as a pipeline or workflow. These pipelines are usually authored by
data scientists, data engineers, machine learning engineers, and/or
MLOps teams, with Python being the prevailing language of choice.

For enterprises that have adopted Kubernetes as their model devel‐
opment and serving platform, we strongly recommend adopting a
pipeline engine that is Kubernetes native and thus is able to leverage
the existing Kubernetes infrastructure, integrating seamlessly with
the overall MLOps infrastructure in use.

Automating Model Training | 19



There are three major open source pipeline engines that have strong
community adoption and should be considered for your training
infrastructure:

Airflow
Airflow is typically preferred by data scientists and tends to
present the cleanest experience for authoring pipelines—or
directed acyclic graphs (DAGs) in Airflow’s parlance)—but Air‐
flow is not strictly Kubernetes native, which presents challenges
when operationalizing it at scale on Kubernetes.

Kubeflow Pipelines
A part of the broader Kubeflow project, Kubeflow Pipelines is
Kubernetes native at its core, making it more customizable, scal‐
able, and well suited to enterprises with large or multiple data
science teams wishing to share Kubernetes infrastructure, or
with central IT/MLOps teams managing consistent infrastruc‐
ture across teams.

MLflow
MLflow excels at model version tracking, making it easy for
data scientists to adopt and track multiple versions of their
models over time. However, MLflow requires more effort by
operations teams to deploy and scale on Kubernetes.

Do you want to see what a continuous model training
pipeline looks like in action? Red Hat offers an MLOps
lab exercise that helps you build one yourself.

GitOps for Model Training Pipelines
Model training pipelines are like code and should be treated accord‐
ingly. Pipeline definitions should be stored in source control and
versioned, just like traditional application code. And like traditional
application code, authors of pipeline definitions should follow a
robust peer review process when making changes to the definitions.

20 | Chapter 3: Making Training Repeatable

https://airflow.apache.org
https://oreil.ly/0bP2X
https://mlflow.org
https://oreil.ly/l04gD
https://oreil.ly/l04gD


Production training runs, then, should run from clean versions
of these pipelines, pulled from a well-defined version (such as a
branch or tag) of the pipeline in version control. This is GitOps in
a nutshell. GitOps is a recent development in traditional software
operations whereby applications are cleanly deployed from version
control and continuously reconciled to ensure that the deployed
application matches the desired state in version control. When
teams wish to change the state of the application in production, they
do so by changing the application’s definition in version control.

Kubernetes’ declarative approach to deploying applications, along
with the reconciliation loop that keeps Kubernetes applications in
their desired state, make Kubernetes an ideal platform for managing
pipelines with GitOps.

For managing applications on Kubernetes, one of the most popular
projects is Argo CD. Argo CD is a continuous delivery tool for
Kubernetes that allows users to implement GitOps principles into
their workflow. While deploying pipeline definitions with Argo CD
typically requires the development of custom code to convert pipe‐
line definitions from version control into runnable training jobs,
this is an area of rapid innovation, especially from the Kubeflow
project, to allow for simpler pipeline definition management.

Now that you’ve learned how to reliably retrain a model, keep track
of its versions (and that of the data and training pipelines), and
build a more robust open source MLOps infrastructure, you are
prepared to move on to the next step of the AI model lifecycle:
deployment and monitoring.

GitOps for Model Training Pipelines | 21

https://oreil.ly/u9oe-
https://oreil.ly/2yB2U




CHAPTER 4

Model Deployment
and Monitoring

In the previous chapters, you learned about model customization
techniques, including fine-tuning and training, and about making
training and evaluation repeatable. Once you’ve achieved the results
you are looking for with your model, it’s time to deploy your model
to production.

This chapter will prepare you for model deployment and serving by
giving you an overview of the major technologies and techniques
used with Kubernetes to deploy and monitor machine learning
models. While we will focus on specific techniques relevant to large
language models (LLMs) and generative AI, much of this chapter
will also apply to traditional machine learning models.

Overview of LLM Serving
Model serving is the act of processing inference requests in real time,
which requires deploying an already trained model to some location
suitable for receiving these requests. At a high level, model serving
involves packaging the model, deploying it on hardware accelerators
like GPUs or CPUS, exposing APIs for users to query the model,
and enabling metrics for monitoring and alerting. The components
of a model-serving system include model-serving platforms, model-
serving runtimes, and metric gathering and monitoring systems.
Typically, an API gateway and load balancer to handle bursts of
traffic for model queries is also included.

23



The model-serving platform component retrieves the model from
storage (such as Amazon S3 or a local persistent volume) and then
performs various preprocessing tasks such as changing model for‐
mats or postprocessing steps such as gathering metrics. It incorpo‐
rates a model-serving runtime in order to help it serve the model. It
also exposes a REST or gRPC API so that the models can be interac‐
ted with by users while providing model access security through the
gateway and load balancer.

The model-serving runtime component loads the model into the
GPU or CPU memory, deserializes any incoming query or prompt
from its over-the-wire representation, converts it into a format suit‐
able for the model, and then executes the inference on the model to
retrieve a response. This response is typically serialized into a JSON
object or other format and sent back to the calling application.

The metrics and monitoring components typically aggregate the
request metrics such as the request time, error codes, token count,
tracing, and more, storing them to a metrics server like Prometheus.
These metrics allow an MLOps practitioner to ensure the health and
performance of the models in production and diagnose any issues
that may come up via alerting.

Although the majority of development and compute time is spent
on training and tuning a model, nearly 90% of a model’s lifecycle
is spent serving, which is why optimizing serving can be pivotal
to delivering business value from the model. In the next sections,
you will learn about each of these essential components using
Kubernetes-specific tools that will help you scale up your generative
AI inference workloads.

Using a Model-Serving Platform
A model-serving platform is the core component of any inference
system, managing model deployment and scaling according to the
volume of incoming inference requests. There are currently many
platforms available for serving models on Kubernetes. Their pur‐
pose is to simplify and scale the model deployment and inference
serving processes.

24 | Chapter 4: Model Deployment and Monitoring

https://prometheus.io
https://oreil.ly/7rEbn
https://oreil.ly/7rEbn


In order to serve an LLM in a scalable fashion on Kubernetes, a
serving platform should meet these requirements:

• Support for different types of model architecture•
• Extensible by adding new model architectures•
• Support for generating embeddings for different modalities,•

such as text or image
• Support for multiple modalities in inference•
• Support for chaining inference across multiple models (model•

composition)
• A wide range of hardware accelerator support•
• Integration with standard Kubernetes APIs and tools•
• Robust support for different model artifact formats•
• Support for a wide range of storage technologies•
• Integration with API gateways•
• Ability to deploy models in an A/B or canary rollout fashion•
• Provide flexible integration options with pre- and postprocess‐•

ing systems
• Support for automatically scaling inference infrastructure•
• Integration of model monitoring solutions•

One of the most popular tools for deploying LLMs with Kubernetes
is KServe. KServe is a controller for Kubernetes that enables Kuber‐
netes to serve both predictive and generative AI models along with
maintaining inference request pre- and postprocessing pipelines.
Not only does it meet the previously mentioned requirements, but
KServe also provides several benefits that have helped its widespread
adoption in the enterprise:

• An active and thriving open source community•
• Support for traffic routing and autoscaling, including scaling to•

zero
• Support for both batch and real-time inference workloads•
• Support for both predictive and generative AI inference with a•

standard protocol, the Open Inference Protocol

Using a Model-Serving Platform | 25

https://oreil.ly/volxt


Like other controllers, KServe is composed of a set of custom
resources, which are extensions to the base Kubernetes API. One
of these is the ServingRuntime. This is essentially a deployment
template that defines the environment from which models will be
served. KServe comes with a number of ServingRuntimes available
out of the box, but others can be easily added to the system. Each
one defines things like the container image to be used for the
runtime and the model formats that the ServingRuntime supports,
and can be further customized via environment variables set in the
container. This allows users to easily add support for new model
architectures.

At the core of KServe is the InferenceService. This is a custom
resource definition where you define predictors, storage locations,
model format, canaries for gradual deployment, deployment mode,
and anything else required to serve your model. Models are typically
initialized from cloud storage like Amazon S3 buckets, but it is also
possible to use OCI-compliant containers as an alternative to cloud
storage with KServe “Modelcars”.

To use this, an OCI-compliant container image must be created and
then added to a container registry like Quay. When you deploy with
KServe, you can then reference the repository holding the container.
Because a Kubernetes cluster keeps a cache of downloaded container
images, the model doesn’t need to be downloaded multiple times,
which can reduce startup time while still reducing overall disk
usage.

KServe offers three deployment modes: RawDeploy
ment mode uses a standard Kubernetes deployment
and ingress gateway (an API gateway for routing
inbound requests only); serverless mode uses Knative
objects to enable serverless deployment; ModelMesh
allows for multiple models to be deployed in a pod to
scale smaller models with fewer compute resources.

The serving runtime is used within an InferenceService, and the
InferenceService is managed by the KServe Controller (Figure 4-1).
This ensures that the deployed application state matches the defi‐
nition of the InferenceService, creating the deployment for each
inference endpoint and enabling features like autoscaling.

26 | Chapter 4: Model Deployment and Monitoring

https://oreil.ly/gDOnq
https://knative.dev


Each endpoint is composed of three components:

Predictor
This is the only required component of an endpoint. It consists
of a model and model server that makes the model available at
the endpoint.

Transformer
This component allows users to define both pre- and postpro‐
cessing steps as needed to manage incoming request data and
outgoing inference data.

Explainer
This enables an alternate workflow that provides both predic‐
tions and model explanations. KServe provides APIs so that
users can write and configure their own explanation containers.

When a user calls a KServe endpoint with :predict or :explain,
that request is routed to the three components. For either call, the
transformer component is the first stop for the request. If :predict
was called by the user, the request is then routed to the predictor.
If :explain was called by the user, then the request is routed from
the transformer to the explainer component, and then the explainer
calls :predict on the predictor component (Figure 4-1).

Figure 4-1. The request flow for a user calling a KServe endpoint with
the :predict or :explain calls

While KServe has many features that make it a well-functioning
platform for deploying machine learning models out of the box,
LLMs often require some additional work.

Using a Model-Serving Platform | 27



Diving Into LLM-Serving Runtimes with vLLM
Because KServe allows you to define your own ServingRuntime
resources, it is possible to use alternative model-serving runtimes
with it. One such runtime is vLLM, a serving system tailored for
LLMs that aims to enhance inference efficiency and scalability. It
addresses the challenges of deploying LLMs by optimizing memory
usage and execution speed, making it suitable for real-time applica‐
tions that require high throughput and low latency.

KServe also includes an out-of-the-box LLM runtime,
the Hugging Face LLM Serving Runtime, which uses
vLLM as its default backend.

vLLM provides a server built on FastAPI for online model serving
that is compatible with the OpenAI API and also with popular
machine learning frameworks like PyTorch, allowing for seamless
integration with existing machine learning pipelines and facilitating
the deployment of models trained with these frameworks.

vLLM also supports dynamic batching, which groups multiple infer‐
ence requests into a single batch to improve processing efficiency.
This is particularly beneficial in high-traffic scenarios, where it can
significantly increase throughput.

The keys to vLLM’s serving speed are a few core architectural
features:

Paged attention
This is an algorithm that allows the storage of large continuous
key-value pairs in noncontiguous blocks of memory, optimizing
memory use.

Parallel execution
The architecture supports the parallel execution of model com‐
ponents by leveraging model parallelism and tensor slicing.
This allows different parts of the model to be processed simul‐
taneously across multiple hardware units, optimizing resource
utilization and speeding up inference.

28 | Chapter 4: Model Deployment and Monitoring

https://docs.vllm.ai
https://oreil.ly/K3Bsx


Tensor caching
vLLM has an in-memory tensor store, which caches frequently
accessed tensors to avoid repeated computations. This signifi‐
cantly reduces the time needed for inference by providing fast
access to necessary data.

While many model-serving runtimes can be used with KServe,
vLLM is a strong contender for serving LLMs due to these features.
Once your model is deployed, it’s imperative to be able to under‐
stand the model’s performance over time and to keep track of model
families and versions that you have available to your system. In
the next section, you will learn about how to monitor LLMs, what
metrics to monitor, and how to use registries to keep track of your
deployed models.

Monitoring and Keeping Track of Your Models
Whether you have one model or hundreds in production, it is essen‐
tial to monitor their performance in real time and to keep track
of which models you have in production. To monitor performance,
you’ll have to know which metrics you should track. This is partially
dependent on your use case and infrastructure, but there are also
general metrics that you can track. Once you’ve built an understand‐
ing of metrics to track for deployed LLMs, we will move on to
monitoring these metrics in KServe and then tracking your models
in a registry.

LLM Metrics
LLM evaluation is a rapidly advancing field. After all, how do you
tell if an LLM is doing what you want? Are you worried about hal‐
lucinations, or factually incorrect output? Or is machine creativity
important for your use case? Or maybe you don’t care as much
about content but want to make sure that your model is serving
inference requests at an acceptable rate and that requests are not
getting stuck in queues.

For task-based metrics, such as those measuring summarization
or translation, there are countless metrics available to use. You
should use caution, however, since these tasks are open-ended,
and it is unlikely that there is a single metric that will give you
an accurate view of your model’s performance. You will have to

Monitoring and Keeping Track of Your Models | 29



evaluate the metrics for your use case and pick a combination that
accurately conveys your model’s performance on its specific task. A
wide variety of summarization task-specific metrics can be found in
the article “LLM Evaluation for Text Summarization”, published by
Neptune.

Model-serving runtimes typically come with their own metrics
that measure how well the server is handling requests at every
stage of processing. vLLM, for instance, comes with a large met‐
rics class that holds many different useful metrics for LLMs.
Some especially important ones are gauge_gpu_cache_usage and
gauge_cpu_cache_usage, which show how much of the key-
value cache mentioned earlier in this chapter is being utilized,
num_requests_waiting, which shows how many requests are wait‐
ing to be processed, and num_requests_running, which shows how
many requests are being processed. All of these metrics are exposed
by the /metrics endpoint.

vLLM’s metrics, as well as those exposed by KServe, can be inte‐
grated into KServe and visualized in Prometheus. In KServe, all
model-serving runtimes are able to export metrics in a Prometheus-
compatible format.

Prediction Logging
Prediction logging is important in traditional machine learning,
and it remains important with LLMs. Sometimes this is also called
generation logging since the result of a generation is logged. When
combined with the input prompt, input and output tokens used, and
other generation metrics, prediction logs become a powerful tool for
auditing model usage and accuracy.

These can be stored in any existing log storage solution, and all-in-
one solutions like MLflow integrate prediction logging and viewing
into their platform.

Production Model Registry
In Chapter 3, we covered the overall importance of keeping a single,
centralized model registry for the entire AI lifecycle, as well as why
the preceding stages of the lifecycle need a registry. What we haven’t
covered yet, though, is what a model registry brings to production.

30 | Chapter 4: Model Deployment and Monitoring

https://oreil.ly/qX9dx
https://oreil.ly/J57gs
https://oreil.ly/J57gs
https://prometheus.io
https://oreil.ly/BRA7H


When getting ready to deploy a model, it’s important to know which
version of the model is ready for production and which version,
if any, is currently deployed. This is information that you would
store in the model registry, along with each model’s metadata, such
as evaluation results and hyperparameters, which can help with the
decision to deploy or with configuring the serving environment.

Once deployed, the model registry can still provide important ben‐
efits, mostly around monitoring and observability. A registry can
help users easily find model artifacts to track performance metrics
for specific deployed model versions, understand traffic patterns
to those versions, get training and other details to diagnose issues
found in production, and more.

Like model registries, some groups are beginning to
experiment with prompt registries. While these aren’t
currently widely available, this will be an area of inno‐
vation to watch out for, as prompt registries could
provide many of these same benefits to prompts
themselves.

Not only does a deployed model need metric monitoring, but it also
needs safeguards and compliance built in to prevent abuse. This has
become especially urgent with LLMs, due to how well they produce
convincing natural language and due to the open interface with
users they have compared to traditional APIs, creating a vast attack
surface. This poses additional challenges for safely and responsibly
serving LLMs.

Monitoring and Keeping Track of Your Models | 31





CHAPTER 5

Responsible AI

Up until now, we focused on building a model and preparing it for
deployment. Before going live, though, there are additional impor‐
tant considerations to cover.

Large language models (LLMs) are not just powerful from a techni‐
cal standpoint but also from a societal standpoint. They’re being
used to amplify spam, aid scammers, and even generate plausible
propaganda at scale. They are trained on massive corpuses of data,
which include material we want to draw from as well as all kinds
of bias, racism, sexism, and potentially illegal or harmful material
(for example, early versions of ChatGPT cheerfully explained to
users how to build bombs). Because of this, there has been increased
emphasis on and scrutiny of ethical and responsible training and use
of LLMs.

Data Safety and Transparency
Like any other machine learning model, training data is of utmost
importance to LLMs. Unlike other machine learning models, how‐
ever, LLMs generate text, which creates a new attack vector for
bad actors. One way to combat this and help prevent unethical
data usage is to publish clear information about how an LLM was
trained, what data it used, and who developed it. This information
makes it possible for users, researchers, and regulators to effectively
scrutinize the model’s behavior and to report or manage instances
of harm or misuse. There are several platforms and frameworks
available to help achieve this, such as UNESCO’s Global AI Ethics

33

https://oreil.ly/HSfmk


and Governance Observatory, with more being developed and iter‐
ated on by government groups, private think tanks, organizations
building AI, and academic labs.

Because of the wide variety of possible outputs of an LLM, there
are various outputs that a model could generate that could be a
security vulnerability (like leaking personally identifiable informa‐
tion [PII]), a safety or ethical violation (such as generating racist or
sexist content), or harmful information (like how to commit suicide
or to build a bomb). These topics are challenging to consider, and
the open-ended nature of LLMs multiplies the challenge, but it is
important to consider them due to the wide deployment and novel
capabilities of this technology.

As AI becomes more regulated, transparency will be key to ensuring
compliance with laws and standards related to data privacy, use, and
security. Transparent data practices help companies demonstrate
that they are following their legal obligations such as HIPAA for
health data in the US, GDPR in the EU, and censoring PII. The
regulatory frameworks around the world are in a constant state of
flux, so the UN Trade and Development’s page for data privacy laws
around the world is a good resource to consult for the latest views
on the global regulatory landscape.

To evaluate safety, one popular tool currently available is LM-Eval.
LM-Eval allows you to test generative AI models across a wide range
of task-specific benchmarks and also to build your own benchmarks
to test your trained model against. This tool is compatible with
Kubernetes via the TrustyAI Kubernetes Operator, and is installed
by default in Red Hat OpenShift AI. Check out the TrustyAI website
to learn more about using LM-Eval in Kubernetes and see how
LM-Eval fits in with the rest of your cluster.

AI Guardrails
AI guardrails are a new software concept that act as safety mecha‐
nisms for LLMs. These are solutions that act as middleware between
an incoming request and an LLM, and add limitations to prevent
outputs that would be harmful or go against some norm. For exam‐
ple, a security guardrail could detect errant PII in an output and
remove it before returning it to a user. Guardrails should be able
to enforce an enterprise’s policies and guidelines, enable contextual
understanding, and be regularly updated.

34 | Chapter 5: Responsible AI

https://oreil.ly/HSfmk
https://oreil.ly/gCUls
https://oreil.ly/gCUls
https://oreil.ly/4s0C_
https://oreil.ly/ZeZyV
https://oreil.ly/dsTgo


One community building an entire suite of open source AI safety
tools is TrustyAI, who also created LM-Eval, mentioned in the
previous section. They also provide AI guardrail tooling, such as
trustyai-detoxify, a Python module within the larger TrustyAI
Python library that provides guardrails around toxic language,
among other safety tools centered on toxic language. Additionally,
they maintain TrustyAI Guardrails, which acts as a server for calling
detectors (such as a toxic language detector) to help developers
implement their own guardrails.

LLM guardrail detectors are tools that ensure LLMs operate within
predefined ethical, safety, and operational boundaries. These are
designed to identify and mitigate undesirable outcomes, such as
generating harmful or inappropriate content, ensuring that AI sys‐
tems behave responsibly. There are a wide array of detectors avail‐
able today, and you can access many public ones via the Guardrails
AI Hub. Some broad examples of detectors include:

PII detectors
These screen outputs for PII and prevent it from reaching the
user.

Hate, abuse, profanity (HAP) detectors
These screen outputs for toxic content, bias, or harmful content
like hate speech, discrimination, or misinformation.

Bias detectors
These analyze outputs for signs of unfair biases related to race,
gender, religion, or other attributes.

Prompt injection detectors
These recognize and counter potential adversarial prompts or
attempts to manipulate the model into generating harmful
content.

TrustyAI provides a Kubernetes Operator that allows you to seam‐
lessly integrate it with your cluster, as well as a custom explainer for
KServe.

While these toolkits are not exhaustive, they are currently available
resources to help address abuses of LLMs, keeping your users and
your enterprise safe. To dive deeper into mitigating bias and harm
throughout the AI development lifecycle, consult Aileen Nielsen’s
book Practical Fairness (O’Reilly, 2020).

AI Guardrails | 35

https://oreil.ly/hMSM-
https://oreil.ly/AUOiB
https://hub.guardrailsai.com
https://hub.guardrailsai.com
https://oreil.ly/kB0fi
https://oreil.ly/FzfM_
https://oreil.ly/FzfM_
https://www.oreilly.com/library/view/practical-fairness/9781492075721/




CHAPTER 6

Summary and Outlook

In this report, you learned about the multilayered lifecycles that gov‐
ern AI projects (the AI development lifecycle in Figure 1-1 and the
AI model lifecycle in Figure 3-1) and open source Kubernetes-based
tools that work to enable each of those phases at scale. You learned
how to leverage open source tools to successfully move a generative
AI model through these cycles, standardizing the process of model
creation and allowing you to confidently deploy and manage AI
models in production.

To understand how these phases interact, which open source tools
to use at each phase, and how they look in practice, let’s look at an
example project.

Personalized Healthcare Chatbot
In this example, let’s follow a fictional generative AI team at a major
health insurer as it pitches and builds a personalized health chatbot.
In the first phase of the AI development lifecycle, the project is
initiated.

During project initiation, the generative AI team lead meets with the
team’s organization’s director of engineering, head of sales, head of
IT, and director of research and development to discuss a project
idea floated by a member of the team. She pitches a personalized
chatbot that healthcare subscribers can interact with to navigate
questions about their personal health, their insurance policy, and
healthcare providers. She claims this can reduce time spent by

37



customer agents on common, personalized tasks; reduce personally
identifiable information (PII) and health information from being
exposed to customer agents; and increase a subscriber’s agency over
their own healthcare, reducing costs and increasing satisfaction.

The business units are convinced by the case she made, but the
director of engineering is skeptical. How will data be safeguarded?
What kinds of technologies will be used? How can we deploy this
and serve all of our customers? The team lead explains this to the
director of engineering, who is satisfied with her answers. We’ll
break down her plan throughout the rest of the chapter.

Once the project initiation is developed and agreed upon, the next
phase, shown in Figure 1-1, is data preparation. Our technical lead’s
team gets to work collecting data to train and personalize the chat‐
bot. The team chooses a popular foundation model, which it will
fine-tune to have better access to nonidentifiable company-wide
information, and then will use techniques such as prompt engineer‐
ing and retrieval-augmented generation (RAG) at inference time
with a user’s personal information to further personalize individual
chatbot sessions. Within this phase is the first phase of the AI model
lifecycle from Figure 3-1: gathering training/fine-tuning data. The
team builds data ingestion pipelines from its healthcare partners
and internal systems, online analytics processing (OLAP) databases to
store this data, and object storage technologies to store additional
data and views.

Next, the generative AI team enters the model experimentation phase
of the AI development lifecycle. This is an iterative phase that
includes the following phases of the AI model lifecycle (Fig. 3-1):

• Developing training/fine-tuning code•
• Executing the training/fine-tuning job•
• Evaluating the trained model•

The team spends several months working on this, building the
initial model training code scaffolding on which the team will fine-
tune the foundation model and test RAG techniques and different
prompts. The team committed to a cloud-agnostic open source
platform to allow greater flexibility across many environments, and
so chose to build its infrastructure with Kubernetes. Because fine-
tuning a foundation LLM is less intensive than training one from
scratch, the team chose to use PyTorch libraries to fine-tune an

38 | Chapter 6: Summary and Outlook



existing smaller foundation model on a small corpus of the compa‐
ny’s data. Early exploratory versions were created in a small Jupyter
notebook environment, but as the fine-tuning datasets, base models,
and fine-tuned models grew in size, the team turned to Kubeflow
and the Kubeflow Training Operator to scale up the fine-tuning
process on its Kubernetes cluster.

As the team trained and evaluated new versions of its fine-tuned
model, managing the training clusters became a headache, and so
the team decided to invest time in finding a training resource man‐
agement tool. The team had become more familiar with Kubernetes
at this point, and wanted to ensure it had plenty of control without
too many abstractions getting in its way. The team adopted Kueue to
queue up and prioritize resource-hungry training jobs, ensuring the
highest-priority jobs would be run first.

One thing the team decided early on in the project, however, was
that it would need an experiment tracking tool. The team knew
it would be repeating the fine-tuning/evaluation cycle frequently
before the first candidate was ready to be promoted to production
across many data scientists, and needed a way to understand who
did what. Because the team had previously chosen Kubeflow as its
platform of choice, the team was able to use Kubeflow Pipelines to
build repeatable training jobs and the Kubeflow Model Registry to
keep track of trained models. This allowed the data science team
to keep track of fine-tuned model artifacts, prompt artifacts, and
model evaluation metrics, making the team lead’s life easier when
deciding when to bring a model into production.

The key deliverables for this phase are production-ready model arti‐
facts and a reusable training pipeline that accelerates both this phase
and the periodic retraining of the deployed model. The pipeline
itself is cleanly versioned using GitOps (see Chapter 3) principles
and Argo CD to manage continuous delivery of clean production
pipeline versions that will be used to train production models.

At the same time, engineers on the generative AI team are working
together with the product engineering team to design and build
APIs and artifact storage that allow the generative AI team to deploy
new models autonomously and the product engineering team to
build a chat interface that doesn’t need to know any details about
the model. This is the application integration phase of the model

Personalized Healthcare Chatbot | 39

https://www.kubeflow.org
https://kueue.sigs.k8s.io
https://oreil.ly/bjLBl
https://oreil.ly/00FxF


development lifecycle, and for smaller teams, this may happen only
after the first production-ready model is trained.

The “last” phase (in quotes because this is a cyclical, iterative pro‐
cess) is putting the model into production service. In Figure 3-1, this
corresponds to promoting the model to production for inference and
monitoring the served model (see Chapter 4).

When a model is promoted to production, a system is put in place
to deploy the chosen artifact and to then serve it behind an API.
While it is running in production, metrics are monitored to ensure
that the model is functioning as expected and that the serving infra‐
structure is returning results to users in a timely manner. Our gener‐
ative AI team lead chose to use KServe with the vLLM runtime. She
chose KServe because of its tight integration with the Kubernetes
ecosystem and active developer community. She chose the vLLM
runtime because it is specifically built for serving LLMs at scale
and has many features and optimizations to serve a high volume
of inference requests quickly. This combination also comes with a
standard API on the model that the product team can access to
finalize application integration and canary deployments to gradually
roll out and test new model versions with a small number of users.

The team spent some time throughout the process to define a num‐
ber of metrics to keep track of for production models. Some of these
came from vLLM, others came from KServe, some were human
feedback scores from customers, and still others the team built.
Thanks to an integration with KServe, the team’s MLOps engineers
are using Prometheus to visualize and monitor the metrics of the
production model and respond right away to slow performance,
traffic spikes, data drift, and outages.

Using Prometheus on several occasions helped the team to catch
a growing scaling issue early on, and the canary deployments pro‐
vided by KServe prevented the issues from affecting more than a
small number of users. Following GitOps best practices allowed the
team to revert the problematic infrastructure version to a previously
known good version, giving the team members time to diagnose and
fix any found bugs before redeploying.

During early testing, the team found that users were able to get
inappropriate answers from the chatbot and that some conversa‐
tions with the chatbot were perceived as rude. One of the machine
learning engineers on the team had recently read about TrustyAI

40 | Chapter 6: Summary and Outlook

https://oreil.ly/sZzWk
https://docs.vllm.ai
https://prometheus.io
https://oreil.ly/wOv-O


Guardrails (see Chapter 5) and began an initiative to build guard‐
rails into KServe. With Prometheus, the team was able to monitor
detections of inappropriate responses and interactions as well as the
customer feedback for these instances. Using the Guardrails, the
team was able to reduce negative interactions by a whopping 87%.

The results were astounding: customer agents had more time to
upskill and work on serving customers who had more complex
issues, customers could get personalized information in a conversa‐
tional interface without having to call or wait for a live agent, and
her team created a blueprint for future generative AI initiatives
throughout the organization.

But the team’s work was not done yet, and in fact wouldn’t be done
until the feature was retired or superseded by another technology.
Because the model was fine-tuned on organization-wide data, it
would have to be periodically fine-tuned, evaluated, and redeployed
to make sure it had up-to-date information. Surprisingly, this would
be a simple effort requiring only one or two data scientists less
than a week to complete. This is all thanks to the generative AI
team lead’s forward thinking by directing the creation and use of a
reusable training pipeline with GitOps, model version tracking via a
registry, data versioning, and using predictable data storage.

Future Technology Outlook
What is next for this intrepid generative AI team? We foresee three
broad dimensions along which innovation in AI and AI platforms
will progress over the coming months:

• Model architectures, the capabilities they yield, and the tools•
and techniques used to create them

• The level of integration between tools underpinning the overall•
MLOps lifecycle and the ability to leverage these integrated
solutions to build intelligent applications more cost effectively

• Further innovation in inference optimization to reduce•
response latency, in areas such as quantization techniques,
LoRA adapters, dynamic batching, and inference workload
scheduling techniques

• The ability to build and maintain AI-enabled applications in a•
way that ensures the responsible and trustworthy use of AI

Future Technology Outlook | 41

https://oreil.ly/wOv-O


Along the first dimension, we will continue to see the largest models
getting larger as compute resources become more performant, more
efficient, and more readily available. At the same time, we will
continue to see novel approaches for customizing smaller models
with an organization’s own data in order to yield high performance
results at lower costs for domain-specific use cases. General purpose
AI will become more powerful and use case-specific models will get
easier to create. The key to taking advantage of these innovations
will be to leverage frameworks and training platforms with strong
open source community adoption in order to be well-positioned at
the forefront of new technological leaps.

Along the second dimension, platform suites such as Kubeflow that
bundle tools across the AI model and development lifecycles will
make it easier for data scientists to use each component in a way
that is increasingly transparent to them. For example, libraries for
training models will natively integrate with experiment tracking and
model registry tools so that data scientists’ experiments are automat‐
ically tracked. Additionally, these solutions will come with tools to
automatically detect and respond to hardware failures during model
training and serving, reducing the overall cost of developing and
running models. These projects will gain and improve capabilities
for managing the cost of developing models via better management
of compute resources and sharing these resources across data sci‐
ence teams.

Managing compute resources is the major theme of the third
dimension. Here, we will see continued optimization of inference
workloads via ongoing research on new quantization techniques
(in which the weights and activations of a model are represented
with lower precision data types, reducing memory usage), efficient
utilization of key-value (KV) caches, LoRA adapters, and dynamic
batching techniques (where requests to the hardware accelerator are
batched based on batch size or time elapsed), all in order to make
more efficient use of hardware accelerators like GPUs. We will also
begin to see wholly new innovations in how inference workloads
are scheduled and executed on hardware accelerators, again to use
existing accelerators more efficiently.

And along the final dimension, we expect to see more resources
(financial, talent, etc.), research, and tooling dedicated to the ethi‐
cal and safe training and use of generative AI. From training data
lineage and tracking to model explainability and safety tools like

42 | Chapter 6: Summary and Outlook

https://oreil.ly/MOnY_


guardrails and hallucination detection, generative AI has broadly
expanded the potential for harmful creation and use of LLMs.
Community-driven initiatives like TrustyAI and specifically Trust‐
yAI Guardrails, along with Guardrails Hub, are already making it
easier than ever to protect users, PII, and enterprises from the vari‐
ous direct and indirect harms (such as lawsuits) that can be brought
about with LLMs. Additionally, we expect more norms and tooling
for the ethical collection and sharing of large datasets to protect
privacy and intellectual property rights.

Future Technology Outlook | 43

https://oreil.ly/PXDlY
http://hub.guardrailsai.com


About the Authors
Alex Corvin is a senior engineering manager responsible for craft‐
ing and executing capabilities for data scientist experimentation and
model training within Red Hat OpenShift AI, Red Hat’s flagship
AI/ML platform. Alex has orchestrated creation and enhancement
of functionalities for distributed training and fine-tuning of AI
models, encompassing extensive language models, utilizing tools
such as Ray and PyTorch. Alex and his team contribute heavily
to several prominent open source projects including Kubeflow Pipe‐
lines, Kueue, Kuberay, Feast, and Kubeflow Training Operator. Alex
has spoken at numerous industry conferences like Ray Summit,
DevConf, NVIDIA GTC, OpenShift Commons, and more.

Taneem Ibrahim is a senior engineering manager whose team is
responsible for several projects in the development of an enterprise-
class MLOps product, Red Hat OpenShift AI. As part of the prod‐
uct engineering work, Taneem and his team participate in several
open source projects such as model serving (KServe, ModelMesh,
vLLM), responsible AI (TrustyAI, AIX360), and model registry
(KubeFlow, ML Metadata). Taneem has also worked with an exten‐
sive AI partner ecosystem for integration with OpenShift AI and
IBM watsonx.ai. Taneem has spoken at many industry events like
Ray Summit, Red Hat Summit, and KubeCon.

Kyle Stratis is a software engineer with over a decade of experience
across the AI development lifecycle in a variety of domains, includ‐
ing computer vision, health technology, and social media analytics.
Along with being an O’Reilly author, he is the founder of Stratis
Data Labs, an AI and data consultancy, and was most recently the
lead machine learning engineer at Vizit Labs, where he built Vizit’s
internal AI platform.

https://stratisdatalabs.com
https://stratisdatalabs.com

	Cover
	Red Hat
	Copyright
	Table of Contents
	Chapter 1. Introduction
	What Is MLOps?
	Why Use Kubernetes for Your MLOps Platform?

	Chapter 2. Model Development on Kubernetes
	Overview of LLM Customization Techniques
	Retrieval-Augmented Generation
	Model Fine-Tuning

	Kubernetes-Native Model Training Tools
	Ray
	Kubeflow Training Operator
	Native Training Framework Integration with Kubernetes

	Managing Compute Resources for Training

	Chapter 3. Making Training Repeatable
	Retraining and the Model Development Lifecycle
	Tracking Model Versions
	Automating Model Training
	GitOps for Model Training Pipelines

	Chapter 4. Model Deployment and Monitoring
	Overview of LLM Serving
	Using a Model-Serving Platform
	Diving Into LLM-Serving Runtimes with vLLM
	Monitoring and Keeping Track of Your Models
	LLM Metrics
	Prediction Logging
	Production Model Registry


	Chapter 5. Responsible AI
	Data Safety and Transparency
	AI Guardrails

	Chapter 6. Summary and Outlook
	Personalized Healthcare Chatbot
	Future Technology Outlook

	About the Authors



