
Integrate
Red Hat OpenShift Service on AWS
with AWS services
A step-by-step guide

2

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Contents

Chapter 1:

Talk to AWS and Red Hat
Introduction and intent of this e-book

Chapter 2:

Introduction to
Red Hat OpenShift
Overview of Red Hat OpenShift and why
organizations choose it over Kubernetes

Chapter 3:

Introduction to Red Hat
OpenShift Service on AWS
Overview of the benefits, options, and
architecture of OpenShift Service on AWS

Chapter 4:

Integrate OpenShift Service
on AWS with AWS services
Steps for integrating your OpenShift
Service on AWS environment with AWS
cloud services

Chapter 5:

Centralize identity
and access management
with Amazon Cognito
Step-by-step instructions for
integrating OpenShift Service
on AWS with Amazon Cognito

	► CLI instructions

	► Web console UI instructions

Chapter 6:

Simplify log management
and analysis with
Amazon CloudWatch
Step-by-step instructions for
integrating OpenShift Service
on AWS with Amazon CloudWatch

	► CLI instructions

	► Web console UI instructions

Learn more
Summary and next steps

1

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Chapter 1

Talk to AWS and Red Hat

If you are considering Red Hat® OpenShift® Service on AWS (ROSA), we want to connect and talk with you.
While this e-book provides guidance on getting started and integrating cloud-native services with OpenShift
Service on AWS, Red Hat and Amazon Web Services (AWS) offer many more resources to help you take your
experience further. We want to make sure that OpenShift Service on AWS is the platform that meets your
application and innovation needs.

OpenShift Service on AWS was created for one simple reason: customers like you asked for it. More than ever
before, our joint customers—enterprises and organizations of all sizes—are deploying Red Hat’s portfolio on AWS.

Red Hat OpenShift has been fully supported as a self-managed offering on AWS for years, providing a
customizable option for organizations that want more control over their environment. However, setup,
deployment, and Day 2 management require both expertise and time that some customers may not have.

A growing number of organizations have successfully adopted OpenShift Service on AWS—the fully managed
offering of Red Hat OpenShift on AWS. These customers spend far less time on setup and Day 2 operations and
more time focusing on their applications.

We created this guide based on our own hands-on experience to provide you with best practices for integrating
AWS-native services with OpenShift Service on AWS. The content in this guide is modular: you can choose to read
the chapters in order or simply search for the information you need. If you’re reading this e-book digitally, you can
use the navigation buttons at the top of the page to jump between chapters and the table of contents.

If you have questions that aren’t answered in this guide, please contact us so we can connect you with an account
team focused on your success.

https://www.redhat.com/en/technologies/cloud-computing/openshift/aws
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift/aws#contact:~:text=Talk%20to%20a%20Red%20Hatter

2

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Who should read this e-book

This e-book is a guide for technical audiences—including developers and operations staff—who want to enhance
their applications and processes with familiar AWS tools and services directly integrated with OpenShift Service
on AWS.

What this e-book covers

This guide covers key topics for understanding and using AWS development tools with OpenShift Service on
AWS. We begin with an introduction to Red Hat OpenShift and the reasons why many developers and operators
choose it as their application platform, and how they derive value from it. Then we’ll explain how you can integrate
2 key AWS services—Amazon Cognito and Amazon Cloudwatch—with OpenShift Service on AWS. Chapters 5 and
6 provide a hands-on guide for setting up both AWS services and OpenShift Service on AWS to implement the
integration. Finally, in the last chapter, we offer helpful next steps.

3

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Chapter 2

Introduction to Red Hat OpenShift

This chapter provides an introduction to Red Hat OpenShift, including what it is, how it is used, and the benefits
it can deliver. Whether you’re just getting started or you’re already familiar with the platform, this chapter serves
as a useful primer on the value and importance of Red Hat OpenShift.

Overview of Red Hat OpenShift

Red Hat OpenShift is a trusted, comprehensive, and consistent application platform for developing, deploying,
modernizing, and managing traditional and cloud-native applications across hybrid cloud environments.

With support for a variety of environments, applications, and skill levels, Red Hat OpenShift lets developers build
innovative applications in less time while boosting the performance of critical workloads. You can access validated
images and solutions from hundreds of partners, with security scanning and cryptographic signing throughout
the delivery process. Or use on-demand images and natively access a wide range of third-party cloud services,
all through a single platform.

By streamlining essential IT activities on a unified application platform, Red Hat OpenShift helps operations
teams increase efficiency and maintain security of complex hybrid environments. Gain visibility into deployments
across multiple locations and teams with built-in logging and monitoring. Embed application logic for native and
third-party services with Red Hat OpenShift operators to simplify configuration, performance tuning, update, and
patching tasks.

Red Hat OpenShift helps organizations empower their IT operations and development teams. Many joint Red Hat
and AWS customers choose Red Hat OpenShift Service on AWS (ROSA) as their preferred platform to speed
application development and delivery across hybrid cloud environments.

4

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Can’t I just use Kubernetes?

Kubernetes is an important open source project—it is one of the Cloud Native Computing Foundation’s key
projects and an essential technology for running containers. As a result, you may wonder if you can simply run y
our applications using Kubernetes alone.

Many organizations start by deploying Kubernetes and can get a container, or even a simple enterprise
application, running in a few days. However, they increasingly find themselves building and managing their
own application platform, based on Kubernetes technology, as they move into Day 2 operations, implement
security requirements, and deploy more applications. For example, they might add an open source ingress
controller, write scripts to connect their continuous integration/continuous deployment (CI/CD) pipelines,
and try to deploy more complicated applications. At this point, the complexity of Day 2 management operations
often becomes overwhelming.

Dealing with the complexity of building and maintaining a successful custom application platform usually
takes an operations team of several people and weeks to months of effort. This can lead to inefficiency in
the organization, complicated security and certification processes, and greater time and effort spent when
onboarding developer teams.

The tasks involved with building, maintaining, and supporting a Kubernetes-based application platform can be
grouped into 3 categories:

	► Cluster management, including operating system installation and patching, Kubernetes installation, container
network interface (CNI) configuration, authentication integration, ingress and egress setup, persistent storage
setup, node hardening, security patching, and underlying cloud configuration.

	► Application services, including log aggregation, health checks, performance monitoring, security patching,
container registry management, and application staging process setup.

	► Developer integration, including integration of CI/CD pipelines, developer tools, integrated development
environments (IDEs), and frameworks; middleware compatibility testing; application performance dashboard
setup; and role-based access control (RBAC) configuration.

This list is only a sample of the activities needed to start running containers in production. Even so, the time,
effort, and understanding needed to complete these tasks is insignificant when compared to the ongoing
maintenance of the platform and its individual components. Each component has its own release cycle, security
policies, and patches and each integration must be thoroughly tested with each change and update.

5

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Chapter 3

Introduction to Red Hat
OpenShift Service on AWS

Red Hat OpenShift Service on AWS (ROSA) is a turnkey platform for developing, deploying, and administering
applications across hybrid cloud environments. As a managed Red Hat OpenShift offering on AWS, OpenShift
Service on AWS provides a complete application platform with fully integrated development and operational
productivity features that let you build, operate, and scale globally and on demand through a familiar management
interface. With IDEs, runtimes, build pipelines, monitoring tools, logging application programming interfaces
(APIs), and service mesh capabilities—all built on a Kubernetes core—OpenShift Service on AWS is an ideal
foundation for your containerized applications.

Key benefits of OpenShift Service on AWS

As a joint, cloud-native offering from Red Hat and AWS, OpenShift Service on AWS provides key benefits
for organizations with cloud-native and hybrid cloud environments.

	► Streamlined integrations. OpenShift Service
on AWS is directly accessible from the AWS
console, so you can simply integrate native
AWS toolsets, applications, and services.

	► Expert support. Red Hat and AWS jointly
operate and support OpenShift Service on
AWS with an integrated support experience and
99.95% uptime service-level agreement (SLA).

	► Comprehensive features. OpenShift Service
on AWS includes built-in tools and services
as well as integrations with native AWS
applications services like AWS App Runner,
Elastic Load Balancing, AWS Directory Service,
Amazon CloudWatch, and AWS X-Ray.

	► Simplified billing. A single invoice from AWS
for both your Red Hat OpenShift service and
AWS infrastructure consumption streamlines
and simplifies purchasing processes.

	► Cost-effective procurement. Use AWS
committed spend, negotiated discounts, and
entitlements to purchase OpenShift Service
on AWS.

	► Reliable operations. OpenShift Service
on AWS is backed by expert site reliability
engineers (SREs) who automate the
deployment and management of Red Hat
OpenShift clusters.

https://www.redhat.com/en/topics/cloud-computing/sre
https://www.redhat.com/en/topics/cloud-computing/sre

6

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Maximize your benefits with Red Hat OpenShift cloud services

Red Hat OpenShift cloud services—including OpenShift Service on AWS—build on the benefits of Red Hat
OpenShift to deliver even more value. The Forrester study titled The Total Economic Impact™ of Red Hat
OpenShift Cloud Services highlights several key financial benefits:

	► 468% return on investment1

	► US$4.08 million net present value (NPV)1

	► 6-month payback time1

Beyond these financial benefits, the customers interviewed for the Forrester report experienced:

	► Faster development cycles. Using Red Hat OpenShift cloud services allowed organizations to shorten their
development cycle by up to 70%. By using an application platform with built-in tools—as well as the flexibility
to use preferred cloud-native tools—organizations were able to spin up environments faster and focus on high-
priority activities like responding to customer needs.1

	► More focused development teams. Interviewees noted that Red Hat OpenShift cloud services eliminated
the need for developers to maintain the application development infrastructure, allowing them to fully
focus on building products and solutions. Over 3 years, this recaptured developer time was worth more
than US$2.13 million.1

	► 50% greater operational efficiency. Interviewees noted that using these managed service solutions
meant they could reassign 50% of DevOps employees who were previously responsible for managing the
infrastructure to other work that is more productive.1 Over 3 years, this increased operational efficiency was
worth more than US$1.3 million.1

	 1	 Forrester. “The Total Economic Impact™ of Red Hat OpenShift Cloud Services,” February, 2024.

https://www.redhat.com/en/resources/economic-impact-of-cloud-service-analyst-material
https://www.redhat.com/en/resources/economic-impact-of-cloud-service-analyst-material
https://www.redhat.com/en/resources/economic-impact-of-cloud-service-analyst-material

7

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Migrate your virtual machines to a cloud-ready platform

For organizations looking to migrate and modernize virtual machine workloads, Red Hat OpenShift Virtualization
on OpenShift Service on AWS offers a solution to run virtual machines and containers on a single enterprise
software foundation. Included with your OpenShift Service on AWS subscription, Red Hat OpenShift Virtualization
lets you create, import, clone, migrate, and manage Linux® and Microsoft Windows virtual machines on a modern
application platform. In addition to running virtual machines, Red Hat OpenShift Virtualization on OpenShift
Service on AWS provides:

	► Integrated tools and capabilities to build, modernize, and deploy applications with both virtual machine-
and container-based workloads.

	► Consistent and cost-effective operation across hybrid and multicloud environments.

	► Self-service provisioning options for deployment of virtual machines and integration with CI/CD pipelines.

Read the Red Hat OpenShift documentation to learn more about Red Hat OpenShift Virtualization on
OpenShift Service on AWS.

Accelerate innovation with AI-enabled applications

Integrating artificial intelligence and machine learning (AI/ML) technologies into key applications can help
organizations enhance customer experiences and increase their competitive advantage. Red Hat OpenShift
AI uses the capabilities of OpenShift Service on AWS to provide a reliable AI/ML platform for building, training,
tuning, deploying, and monitoring intelligent applications across hybrid cloud environments. With a choice of AI/
ML technologies from a robust partner ecosystem—including IBM watsonx, Amazon SageMaker, NVIDIA, Run:ai,
Elastic, and Starburst—Red Hat OpenShift AI lets you select the best tools for your business needs.

https://www.redhat.com/en/technologies/cloud-computing/openshift/virtualization
https://www.redhat.com/en/technologies/cloud-computing/openshift/virtualization
https://docs.openshift.com/rosa/virt/about_virt/about-virt.html
https://docs.openshift.com/rosa/virt/about_virt/about-virt.html
https://www.redhat.com/en/technologies/cloud-computing/openshift/openshift-ai
https://www.redhat.com/en/technologies/cloud-computing/openshift/openshift-ai
https://www.ibm.com/watsonx
https://www.redhat.com/en/technologies/cloud-computing/openshift/openshift-ai
https://catalog.redhat.com/partners/detail/53106604cf1211ed8b8702e289077cf5
https://catalog.redhat.com/partners/detail/run-ai
https://catalog.redhat.com/partners/detail/elastic
https://catalog.redhat.com/partners/detail/starburst

8

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

OpenShift Service on AWS architecture overview

OpenShift Service on AWS features a streamlined architecture, offering a robust Kubernetes foundation that
enhances security and reliability for applications on AWS. The architecture supports both hybrid and cloud-
native deployment patterns, empowering developers with familiar tools and reducing cluster management
overhead. By integrating Red Hat OpenShift software components with AWS services, OpenShift Service on
AWS provides a cohesive and efficient environment familiar to many Kubernetes users. These commonly used
AWS services include:

	► Amazon Elastic Compute Cloud (EC2)

	► AWS Elastic Load Balancing (ELB)

	► Amazon Elastic Block Store (EBS)

	► Amazon S3

	► AWS Virtual Private Cloud (VPC)

	► Amazon Route 53

	► AWS Security Token Service (STS)

	► AWS Identity and Access Management (IAM)

	► AWS PrivateLink

	► AWS Key Management Service (KMS)

Users running self-managed Red Hat OpenShift on-site should note that in OpenShift Service on AWS, AWS
services replace many functions that are normally provided by local services, including the domain name system
(DNS), storage appliances, and infrastructure.

9

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Figure 1. Network topology of an OpenShift Service on AWS cluster with hosted control planes

OpenShift Service on AWS service account

10

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Figure 2. An OpenShift Service on AWS cluster with hosted control places in a private API network deployment

OpenShift Service
on AWS service account

11

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Figure 3. An OpenShift Service on AWS cluster with hosted control planes in a public API network deployment

Foundation

Red Hat OpenShift is based on Red Hat Enterprise Linux® CoreOS, an immutable operating system designed to
run containerized software. Red Hat Enterprise Linux CoreOS hosts the essential software components for each
cluster node’s functionality. Each virtual machine instance in a cluster runs the kubelet service, a core component
of Kubernetes architecture that manages container pods on each node according to instructions from the control
plane. The state of all elements in Red Hat OpenShift is stored in etcd—a reliable, clustered key/value store that
serves as the authoritative source of truth for the cluster. Refer to the OpenShift Service on AWS documentation
to learn more about its foundational architecture.

Application compute

OpenShift Service on AWS clusters contain worker nodes—also known as compute nodes—that run your
applications and workloads. Machine pools are logical groups of worker nodes that are allocated to specific AWS
availability zones (AZs), sharing the same configuration and fault domains. When you build an OpenShift Service
on AWS cluster, it initially includes at least 2 worker nodes that are part of the cluster’s first machine pool.

OpenShift Service
on AWS service account

https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html/architecture/architecture-rhcos
https://docs.redhat.com/en/documentation/red_hat_openshift_service_on_aws/4/html/architecture/rosa-architecture-models#rosa-hcp-architecture_rosa-architecture-models

12

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Clusters can have many machine pools. By configuring several machine pools—each within a different AZ—you can
distribute application pods across nodes with multiple replicas for redundancy. Each machine pool has a distinct
configuration, including the Amazon EC2 instance type and the associated Amazon EBS volumes that store the
root operating systems for the nodes.

Additionally, each machine pool in an OpenShift Service on AWS cluster can run a different version of Red Hat
OpenShift, providing flexibility in managing upgrades. The cluster’s control plane operates within the OpenShift
Service on AWS management plane, and you can select the version for your cluster. The version of the control
plane must be the same as or newer than the versions of the machine pools. In other words, machine pools cannot
have a newer version than the cluster’s control plane. Red Hat and AWS fully support your cluster as long as both
the control plane and machine pools are within the support lifecycle.

Support and management

Beyond version updates, the management and health of your cluster’s control plane are fully handled by Red Hat
and AWS. The control plane automatically scales to match the size of your cluster, while the request-serving
components are highly available and distributed within the same region where your cluster was created.

Networking

You must satisfy a basic set of network requirements to establish a fully functional OpenShift Service on AWS
cluster. This includes a minimum number of subnets within your Amazon VPC to support both private and public
EC2 instance networking, as well as AWS elastic load balancers. You need 1 network load balancer to serve as
the default ingress (or router) for directing traffic to your applications, and another load balancer for managing
traffic to your cluster’s Kubernetes API. Optionally, you can set up additional load balancers for specific services
advertised by your applications, allowing for customized traffic management.

Within your OpenShift Service on AWS cluster, the service network, also known as the container network interface,
is managed by OVN-Kubernetes. This overlay network uses Geneve network virtualization encapsulation to
connect all nodes, pods, and services in the cluster. Each node runs Open vSwitch, supporting declarative network
operations controlled by OVN-Kubernetes. As a vendor-agnostic networking solution supported by Red Hat,
OVN-Kubernetes provides features like ingress and egress rules and network policies.

13

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Red Hat OpenShift operators

OpenShift Service on AWS includes Red Hat OpenShift operators that automatically manage your cluster. These
operators consume a small amount of resources in your cluster. Some examples are:

	► OpenShift Service on AWS Control Plane Operator

	► OpenShift Service on AWS Ingress Operator

	► OpenShift Service on AWS EBS Container Storage Interface (CSI) Driver Operator

	► OpenShift Service on AWS Cloud Network Config Operator

	► OpenShift Service on AWS Image Registry Operator

Managed control plane

The worker nodes in your cluster receive scheduling and operational commands from the control plane. This
connection is established through a VPC endpoint in your AWS account, which allows worker nodes to connect
to the OpenShift Service on AWS control plane via AWS PrivateLink. This setup ensures that all communication
between your account and the OpenShift Service on AWS service is encrypted. Additionally, all communication
within your cluster is securely encrypted.

Data plane

Storage for all persistent data in your cluster is encrypted at rest, following AWS default encryption practices.
OpenShift Service on AWS clusters use the default account key in AWS KMS for encryption, unless you specify
an alternative. This encryption applies to storage at rest for cluster nodes in your AWS account and the initial
StorageClass for persistent volumes used by your workloads. Additionally, you can encrypt the etcd database
for your OpenShift Service on AWS cluster using a specific AWS KMS key or the same key used for initial
storage encryption.

Access control

As the owner of an OpenShift Service on AWS cluster, you can configure RBAC—including cluster-admin
privileged access—to manage user permissions. Red Hat OpenShift provides RBAC levels that you can customize
to meet the needs of your organization. This RBAC layer is separate from the AWS IAM controls governing your
AWS account.

14

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

OpenShift Service on AWS clusters communicate with the AWS cloud API to automatically manage resources
using AWS IAM roles. AWS STS provides the required temporary credentials using roles and policies defined
during installation. All authentication and authorization for cluster components rely on these AWS IAM roles and
managed policies for short-lived tokens for AWS API access.

The policies are continuously updated to ease management during cluster upgrades and changes in platform
versions. AWS managed policies for OpenShift Service on AWS are carefully reviewed and approved by Amazon
to ensure adherence to the principle of least privilege. Policies are also restricted by conditions based on resource
tags, allowing the platform to perform actions only on resources with specific tags. This approach emphasizes the
importance of maintaining a strong security posture and implementing secure cloud practices.

15

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Chapter 4

Integrate OpenShift Service
on AWS with AWS services

This chapter describes how to efficiently integrate key features between your Red Hat OpenShift Service on AWS
(ROSA) environment and AWS services. This guide provides 2 example integrations that reflect best practices
from cloud services experts at Red Hat and AWS. Each example outlines the steps to connect your OpenShift
Service on AWS environment and AWS services and highlights the scalability, flexibility, and performance benefits
of the integration.

This guide reviews the integration process using both the web console user interface (UI) and the command line
interface (CLI). Some screen captures and commands may differ due to ongoing software updates. Review the
steps carefully.

Because they are designed to simplify the integration process, these examples are not a substitute for official
documentation or support. They should not be used to implement production-grade systems. You may need
to review and adapt the steps to fit your specific needs and environments.

Set up environments and access

Before starting, ensure you have the following in place:

	► OpenShift Service on AWS installation. This guide does not include set-up steps. You can install OpenShift
Service on AWS from your Amazon account.

	► Administrative access. You will need access to your AWS environment running OpenShift Service on AWS,
Amazon Cognito, and Amazon CloudWatch. For production deployments, customize access according to
your requirements.

	► Red Hat account. Create a free account in the Red Hat Hybrid Cloud Console to access the Red Hat
OpenShift Cluster Manager (OCM) environment used in these examples.

https://aws.amazon.com/rosa/
https://console.redhat.com/

16

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Using the CLI

The CLI-based examples require a CLI configured with the AWS and OpenShift Service on AWS CLI tools and the
Red Hat OpenShift oc tools.

The AWS CLI is authenticated with your AWS account and configured for the region where OpenShift Service on
AWS is running. Consult the AWS CLI documentation for more details.

The OpenShift Service on AWS CLI is authenticated with your Red Hat OpenShift Cluster Manager login. Use the
following commands to confirm that the oc command is accessible to the OpenShift Service on AWS CLI.

rosa login

rosa list clusters

rosa verify openshift-client

Consult the OpenShift Service on AWS getting started guide for more details.

Using the web console UI

Use your web browser to follow the UI-based examples. You can find your clusters in Red Hat OpenShift Cluster
Manager. To log in to the OpenShift Service on AWS console from Red Hat OpenShift Cluster Manager, select
the Overview tab, then click on the Open console button in the upper right corner.

Figure 4. Log in to the OpenShift Service on AWS console from Red Hat OpenShift Cluster Manager.

https://aws.amazon.com/cli/
https://docs.openshift.com/rosa/rosa_getting_started/rosa-getting-started.html
https://console.redhat.com/openshift/
https://console.redhat.com/openshift/

17

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Create a local admin user

Set up a local admin user for OpenShift Service on AWS using the htpasswd identity provider (IDP). Although
this is not recommended for production environments, it is helpful for understanding the examples. There are 2
methods to create this user; these are briefly outlined below. For detailed instructions, refer to the OpenShift
Service on AWS getting started guide.

Follow these steps to create a local admin user through the UI.

1.	 Navigate to the Access control section of your cluster in Red Hat OpenShift Cluster Manager.

2.	 Under Identity Providers, select Add identity provider and htpasswd.

3.	 Name your provider cluster-admin.

4.	 Create a user called cluster-admin and set a password.

5.	 Under Cluster Roles and Access, select Add user and enter the User ID as rosa-admin.

6.	 Select cluster-admins as the group and click Add user.

Follow these steps to create a local admin user through the CLI.

rosa create admin --cluster <rosa-cluster-name>

This command creates a simple IDP for OpenShift Service on AWS called rosa-admin and a cluster-admin user
with full administrative access. It also generates a password and provides the following oc login command line:

oc login https://api.<rosa-cluster-name>.domain.p1.openshiftapps.com:6443 \

 --username cluster-admin --password <auto-generated-password>

https://docs.openshift.com/rosa/rosa_getting_started/rosa-getting-started.html
https://docs.openshift.com/rosa/rosa_getting_started/rosa-getting-started.html

18

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Chapter 5

Centralize identity and access
management with Amazon Cognito

Amazon Cognito is an AWS service that offers security-focused, scalable customer identity and access
management, capable of supporting millions of users and devices. Operating on a fully managed, high-
performance, reliable back end, this service lets you efficiently add enterprise-level user management
to applications.

Red Hat OpenShift Service on AWS (ROSA) supports multiple authentication providers, while Amazon Cognito
integrates with external IDPs that support SAML or OpenID Connect (OIDC). An interoperable authentication
protocol based on the OAuth 2.0 framework of specifications, OIDC simplifies identity verification of users based
on authentication performed by an authorization server. The examples in this chapter use the built-in OIDC IDP in
OpenShift Service on AWS to connect with Amazon Cognito.

This chapter provides integration steps for both the CLI and the web console UI:

	► Jump to CLI instructions.

	► Jump to Web console UI instructions.

https://aws.amazon.com/cognito/
https://openid.net/

19

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Integrate OpenShift Service on AWS
and Amazon Cognito via the CLI
This section shows you how to use the CLI to integrate OpenShift Service on AWS and Amazon Cognito.

Create an Amazon Cognito user pool

Amazon Cognito user pools are OIDC IDPs that let you manage authorization and authentication through API
calls. User pools provide an administrator-managed user directory that adds security, application integration,
and customization features. In this example, all cluster users are entirely within AWS.

Create the Amazon Cognito user pool using the aws cognito-idp create-user-pool command. This
command creates a user pool called rosa-pool that does not require email verification. Only administrators
may create user configurations in this pool. All other settings use the Amazon Cognito defaults as seen in the
command output.

aws cognito-idp create-user-pool --pool-name <rosa-pool> \

 --auto-verified-attributes email \

 --admin-create-user-config=’{“AllowAdminCreateUserOnly”: true}’

Create an Amazon Cognito user domain

Follow these steps to create a unique domain for your user pool. You can use an externally hosted domain with
your own DNS or an Amazon Cognito hosted domain. This example uses an Amazon Cognito hosted domain.

1.	 Retrieve your user pool ID and export it as an environment variable.

export AWS_USER_POOL_ID=$(aws cognito-idp list-user-pools \

 --max-results 1 | jq -r .UserPools[0].Id)

2.	 Ensure the environment variable is set correctly. Find the pool ID in the Id: line of the output.

echo $AWS_USER_POOL_ID

20

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

3.	 Create an Amazon Cognito user domain. Specify the domain name and pool ID. This command does not return
any output.

aws cognito-idp create-user-pool-domain --domain <rosa-domain> \

 --user-pool-id $AWS_USER_POOL_ID

Create users in Amazon Cognito

Follow these steps to create an administrative user and 2 regular users. Initially, all users are identical. Later steps
use OpenShift Service on AWS to enable permissions and elevate privileges for the administrative user. Additionally,
this example uses the admin-create-user subcommand for all users. It sets basic attributes and temporary
passwords for all users. The Amazon Cognito user pool policy requires users to change them at first login.

1.	 Create the administrative user. Supply the pool ID using the exported environment variable.

aws cognito-idp admin-create-user \

 --user-pool-id $AWS_USER_POOL_ID \

 --username admin \

 --temporary-password <temp-password> \

 --user-attributes Name=name,Value=”Cluster Administrator” \

 Name=”email”,Value=”admin@example.com” \

 Name=”email_verified”,Value=”true” \

 --message-action SUPPRESS

2.	 Create the regular users.

aws cognito-idp admin-create-user \

 --user-pool-id $AWS_USER_POOL_ID \

 --username user1 \

 --temporary-password <temp-password> \

 --user-attributes Name=name,Value=”Cluster User1” \

 Name=”email”,Value=”user1@example.com” \

 Name=”email_verified”,Value=”true” \

 --message-action SUPPRESS

aws cognito-idp admin-create-user \

 --user-pool-id $AWS_USER_POOL_ID \

 --username user2 \

 --temporary-password <temp-password> \

 --user-attributes Name=name,Value=”Cluster User2” \

 Name=”email”,Value=”user2@example.com” \

 Name=”email_verified”,Value=”true” \

 --message-action SUPPRESS

21

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Create an Amazon Cognito user pool app client

App clients let applications interact with user pools. By connecting all components, app clients allow
communication between OpenShift Service on AWS and Amazon Cognito. When an app client requires an
authorization grant, it calls back to the location in the callback URL. This location resides on OpenShift Service
on AWS and contains the oauth app, cluster, and domain names, along with the oauth2callback path with the IDP
name. For this example, the IDP name is Cognito. While the callback URL is cluster dependent, you can review the
--callback-urls line to see the complete URL for this sample cluster.

Follow these steps to create an Amazon Cognito user pool app client.

1.	 Retrieve and store the callback URL.

CLUSTER_DOMAIN=$(rosa describe cluster -c <rosa-cluster-name> | \

 grep “DNS” | grep -oE ‘\S+.openshiftapps.com’)

2.	 Construct the callback URL.

echo “OAuth callback URL: \

 https://oauth-openshift.apps.${CLUSTER_DOMAIN}/oauth2callback/Cognito”

3.	 Create the Amazon Cognito user pool app client using the callback URL.

aws cognito-idp create-user-pool-client \

 --user-pool-id $AWS_USER_POOL_ID \

 --client-name <rosa-cluster-name> \

 --generate-secret \

 --supported-identity-providers COGNITO \

 --callback-urls \

“https://oauth-openshift.apps.${CLUSTER_DOMAIN}/oauth2callback/Cognito” \

 --allowed-o-auth-scopes “phone” “email” “openid” “profile” \

 --allowed-o-auth-flows code \

 --allowed-o-auth-flows-user-pool-client

4.	 Export the client ID and client secret to environment variables.

export AWS_USER_POOL_CLIENT_ID=$(aws cognito-idp list-user-pool-clients \

 --user-pool-id $AWS_USER_POOL_ID | jq -r .UserPoolClients[0].ClientId)

export AWS_USER_POOL_CLIENT_SECRET=$(\

 aws cognito-idp describe-user-pool-client --user-pool-id $AWS_USER_POOL_ID \

 --client-id ${AWS_USER_POOL_CLIENT_ID} | jq -r .UserPoolClient.ClientSecret)

https://docs.openshift.com/container-platform/4.14/authentication/identity_providers/configuring-oidc-identity-provider.html

22

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

5.	 Ensure the environment variables are set correctly.

echo -e “Client ID: ${AWS_USER_POOL_CLIENT_ID}\n \

 Client Secret: ${AWS_USER_POOL_CLIENT_SECRET}”

Create an OpenShift Service on AWS IDP

An IDP within OpenShift Service on AWS allows users to authenticate with Amazon Cognito. While OpenShift
Service on AWS supports a variety of IDPs, this example uses an OIDC IDP.

Create an OpenShift Service on AWS IDP using the rosa create idp command.

rosa create idp \

 --cluster <rosa-cluster-name> \

 --type openid \

 --name Cognito \

 --client-id ${AWS_USER_POOL_CLIENT_ID} \

 --client-secret ${AWS_USER_POOL_CLIENT_SECRET} \

 --issuer-url https://cognito-idp.$(aws configure get \

 region).amazonaws.com/${AWS_USER_POOL_ID} \

 --email-claims email \

 --name-claims name \

 --username-claims username

The create idp subcommand lets you customize your OpenShift Service on AWS IDP. Here are some
commonly used arguments. Consult the Managing objects with the OpenShift Service on AWS CLI
documentation for further details.

	► --cluster: Name of the OpenShift Service on AWS cluster containing the IDP

	► --type: IDP type

	► --name: Name of identity provider displayed by OpenShift Service on AWS

	► --client-id: Amazon Cognito user pool client ID

	► --client-secret: Amazon Cognito user pool client secret

https://docs.openshift.com/rosa/cli_reference/rosa_cli/rosa-manage-objects-cli.html#rosa-create-idp_rosa-managing-objects-cli
https://docs.openshift.com/rosa/cli_reference/rosa_cli/rosa-manage-objects-cli.html#rosa-create-idp_rosa-managing-objects-cli

23

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

	► --issuer-url: URL that the OIDC IDP asserts as the issuer identifier using the https scheme with no URL
query parameters or fragments
Note: This example uses the Amazon Cognito domain with the AWS region and Amazon Cognito user pool ID.

	► --<VAR>-claims: List of claims used for each type.

By filtering the oc get oauth command with jq, you can see a list of all available IDPs, including the cluster-
admin and Amazon Cognito IDPs.

oc get oauth cluster -o json | jq -r ‘.spec.identityProviders[].name’

OpenShift Service on AWS may take up to 5 minutes to create the IDP. Rerun this command until it reports the
new IDP.

Set up OpenShift Service on AWS permissions
on Amazon Cognito users

OpenShift Service on AWS uses RBAC to assign permissions to user objects. Administrators bind collections of
rules—called roles—to user objects to determine the actions users may perform. Roles are applied as policies and
Red Hat OpenShift has a preconfigured administrative policy called cluster-admin. This example uses that policy
to grant permissions to the Amazon Cognito admin user. Consult the Red Hat OpenShift RBAC documentation
for more details.

Add permissions for cluster administration to the Amazon Cognito admin user using the ocm adm policy
command. This allows the admin user object managed by the Amazon Cognito IDP to be an OpenShift Service on
AWS cluster administrator.

oc adm policy add-cluster-role-to-user cluster-admin admin

You may delete the local user from the htpasswd IDP or retain it for security purposes. In either case, ensure that
both logins are well protected.

https://jqlang.github.io/jq/
https://docs.openshift.com/container-platform/latest/authentication/using-rbac.html

24

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Log in to OpenShift Service on AWS
using the Amazon Cognito IDP

Follow these steps to log in and change your password.

1.	 Click Cognito on the OpenShift Service on AWS log-in screen to select the Amazon Cognito IDP.

2.	 Provide your username and temporary password to authenticate with Amazon Cognito.

25

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

4.	 Confirm that the Amazon Cognito admin user can administer the cluster.

3.	 Change your password. Because this example uses --temporary-password when creating user accounts,
Amazon Cognito requires all users to create a new password during their first login.

26

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Integrate OpenShift Service on AWS and
Amazon Cognito via the web console UI
This section shows you how to use the web console UI to integrate OpenShift Service on AWS and Amazon Cognito.

Create an Amazon Cognito user pool

Amazon Cognito user pools are OIDC IDPs that let you manage authorization and authentication through API
calls. User pools provide an administrator-managed user directory that adds security, application integration,
and customization features. In this example, all cluster users are entirely within AWS.

Follow these steps to create an Amazon Cognito user pool.

1.	 Log in to your AWS console and select the Amazon Cognito service for your region.

2.	 Click Create user pool.

27

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

3.	 Complete the Configure sign-in experience form.

28

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

3.	 View the status of the new domain in the App integration tab.

Create an Amazon Cognito user domain

Follow these steps to create a unique domain for your user pool. You can use an externally hosted domain with
your own DNS or an Amazon Cognito hosted domain. This example uses an Amazon Cognito hosted domain.

1.	 Navigate to the App integration tab in the new user pool.

2.	 Choose Create Cognito domain in the Actions menu.

29

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

3.	 Complete the User information form.

Create users in Amazon Cognito

Follow these steps to create an administrative user and 2 regular users. Initially, all users are identical. Later steps
use OpenShift Service on AWS to enable permissions and elevate privileges for the administrative user.

1.	 Navigate to the Users tab in the new user pool.

2.	 Click Create user.

30

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Create an Amazon Cognito user pool app client

App clients let applications interact with user pools. By connecting all components, app clients allow
communication between OpenShift Service on AWS and Amazon Cognito. When an app client requires an
authorization grant, it calls back to the location in the callback URL. This location resides on OpenShift Service
on AWS and contains the oauth app, cluster, and domain names, along with the oauth2callback path with the IDP
name. For this example, the IDP name is Cognito. While the callback URL is cluster dependent, for this example,
it is https://oauth-openshift.apps.rosa-bj74c.ibhp.p1.openshiftapps.com/oauth2callback/Cognito.

Follow these steps to create an Amazon Cognito user pool app client.

1.	 Navigate to the App client list on the App integration tab in the new user pool.

2.	 Click Create app client.

4.	 Repeat this process for all three users: admin, user1, and user2.

5.	 View the status of the new users in the Users tab.

https://docs.openshift.com/container-platform/4.14/authentication/identity_providers/configuring-oidc-identity-provider.html
https://oauth-openshift.apps.rosa-bj74c.ibhp.p1.openshiftapps.com/oauth2callback/Cognito

31

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

3.	 Complete the Create app client form.

32

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

4.	 Confirm that the new app client appears in the App client list.

5.	 Select the new app client to view and edit details.

33

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Create an OpenShift Service on AWS IDP

An IDP within OpenShift Service on AWS allows users to authenticate with Amazon Cognito. While OpenShift
Service on AWS supports a variety of IDPs, this example uses an OIDC IDP.

Follow these steps to create an OpenShift Service on AWS IDP.

1.	 Navigate to Services > Containers > Clusters in Red Hat Hybrid Cloud Console.

2.	 Select the cluster for the new IDP.

https://console.redhat.com

34

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

3.	 Navigate to Access Control > Identity providers.

4.	 Choose OpenID in the Add identity provider menu.

5.	 Complete the Add identity provider: OpenID form according to the following instructions.

35

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

a.	 Set the Name field with a unique, identifiable value. Users see this name when they choose an
available IDP.

b.	 Confirm that the OAuth callback URL field is correct. This field is prepopulated based on the cluster
name, domain, and OpenID name.

c.	 Set the Client ID field to the Amazon Cognito user pool client ID. Find this value in the App client
information section of the Amazon Cognito console.

d.	 Set the Client secret to the Amazon Cognito user pool client secret. Find this value in the App client
information section of the Amazon Cognito console.

36

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

e.	 Set the Issuer URL field using the https scheme with no URL query parameters or fragments. The URL
begins with cognito-idp, followed by your AWS region, and then the user pool ID. For this example, the
Issuer URL is https://cognito-idp.us-east-2.amazonaws.com/us-east-2_ZRDIOs39r. You can find the
user pool ID in the User pool overview section of the Amazon Cognito console.

f.	 Set the optional Claims mappings fields with email and username mappings.

37

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

6.	 View the status of IDPs in the Access control tab of Red Hat Hybrid Cloud Console.

Set up OpenShift Service on AWS permissions on Amazon
Cognito users

OpenShift Service on AWS uses RBAC to assign permissions to user objects. These objects determine the actions
a user may perform. Administrators bind collections of rules—called roles—to user objects. Consult the Red Hat
OpenShift RBAC documentation for more details.

Follow these steps to add permissions for cluster administration to the Amazon Cognito admin user.

1.	 Navigate to Access control > Cluster Roles and Access in the appropriate cluster in Red Hat Hybrid
Cloud Console.

2.	 Click Add user.

https://console.redhat.com
https://console.redhat.com

38

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

3.	 Set the User ID field to admin and choose the cluster-admin group.

Log in to OpenShift Service on AWS
using the Amazon Cognito IDP

Follow these steps to log in and change your password.

1.	 Click Cognito on the OpenShift Service on AWS log-in screen to select the Amazon Cognito IDP.

39

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

2.	 Provide your username and temporary password to authenticate with Amazon Cognito.

3.	 Change your password. Because this example selects Temporary password > Set a password when creating
user accounts, Amazon Cognito requires all users to create a new password during their first login.

40

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

4.	 Confirm that the Amazon Cognito admin user can administer the cluster.

41

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Chapter 6

Simplify log management and
analysis with Amazon CloudWatch

By default, Red Hat OpenShift Service on AWS (ROSA) stores log data inside clusters, and understanding these
metrics and logs is critical for successfully running your cluster. Included with OpenShift Service on AWS, the
Red Hat OpenShift logging operator simplifies log management and analysis with centralized log collection,
powerful search capabilities, visualization tools, and integration with Amazon CloudWatch—a monitoring and
observability service from AWS. With this integration, you can collect, store, analyze, and visualize OpenShift
Service on AWS infrastructure and audit and application logs directly in Amazon CloudWatch.

This chapter provides integration steps for both the CLI and the web console UI:

	► Jump to CLI instructions.

	► Jump to Web console UI instructions.

https://docs.openshift.com/rosa/observability/logging/cluster-logging-deploying.html
https://aws.amazon.com/cloudwatch/

42

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Integrate OpenShift Service on AWS
and Amazon CloudWatch using the CLI
This section shows you how to use the CLI to integrate OpenShift Service on AWS and Amazon CloudWatch.

Gather information

Follow these steps to collect key information about your OpenShift Service on AWS and AWS environments.

1.	 Retrieve your AWS account ID and export it as an environment variable.

export AWS_ACCOUNT_ID=$(aws sts get-caller-identity \

 --query Account --output text)

2.	 Retrieve your cluster’s OIDC URL by using the oc command to interrogate Red Hat OpenShift’s authentication
API and find the serviceAccountIssuer value. This property is the identifier of the bound service account token
issuer. The OIDC URL is created when building your cluster using the OpenShift Service on AWS CLI. Consult
the documentation for more details about OIDC verification options.

export OIDC_ENDPOINT=$(oc get authentication.config.openshift.io \

 cluster -o json | jq -r .spec.serviceAccountIssuer | \

 sed ‘s|^https://||’)

Prepare Amazon CloudWatch

Follow these steps to create the IAM policies and roles that allow Red Hat OpenShift service accounts to access
Amazon CloudWatch.

1.	 Save the following policy to a file. This policy lets the service account create, view, and push to log groups
and streams in Amazon CloudWatch.

https://docs.openshift.com/rosa/rosa_architecture/rosa-oidc-overview.html

43

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

cat << EOF > ${HOME}/policy.json

{

 “Version”: “2012-10-17”,

 “Statement”: [

 {

 “Effect”: “Allow”,

 “Action”: [

 “logs:CreateLogGroup”,

 “logs:CreateLogStream”,

 “logs:DescribeLogGroups”,

 “logs:DescribeLogStreams”,

 “logs:PutLogEvents”,

 “logs:PutRetentionPolicy”

],

 “Resource”: “arn:aws:logs:*:*:*”

 }

]

}

EOF

2.	 Create the policy. Filter and save the resulting Amazon Resource Name (ARN) in a variable.

POLICY_ARN=$(aws iam create-policy --policy-name “RosaCloudWatch” \

 --policy-document file:///${HOME}/policy.json --query Policy.Arn \

 --output text)

3.	 Ensure the variable is set correctly.

echo $POLICY_ARN

Here is a sample policy ARN. 123456789123 is the AWS account ID.

arn:aws:iam::123456789123:policy/RosaCloudWatch

4.	 Insert the AWS account ID and OIDC endpoint into the following trust policy and save it to a file. This policy
specifies the trusted account members allowed to assume the CloudWatch role.

44

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

cat <<EOF > ${HOME}/cloudwatch-trust-policy.json

{

 “Version”: “2012-10-17”,

 “Statement”: [{

 “Effect”: “Allow”,

 “Principal”: {

 “Federated”:

“arn:aws:iam::${AWS_ACCOUNT_ID}:oidc-provider/${OIDC_ENDPOINT}”

 },

 “Action”: “sts:AssumeRoleWithWebIdentity”,

 “Condition”: {

 “StringEquals”: {

 “${OIDC_ENDPOINT}:sub”:

“system:serviceaccount:openshift-logging:logcollector”

 }

 }

 }]

}

EOF

Here is a sample file that includes the AWS account ID and OCID endpoint. 1234567890123 is the AWS account
ID, and oidc.op1.openshiftapps.com/29abcdefghijklms46g is the OIDC endpoint.

cat <<EOF > ${HOME}/cloudwatch-trust-policy.json

{

 “Version”: “2012-10-17”,

 “Statement”: [{

 “Effect”: “Allow”,

 “Principal”: {

 “Federated”:

“arn:aws:iam::1234567890123:oidc-provider/oidc.op1.openshiftapps.
com/29abcdefghijklms46g”

 },

 “Action”: “sts:AssumeRoleWithWebIdentity”,

 “Condition”: {

 “StringEquals”: {

 “oidc.op1.openshiftapps.com/29abcdefghijklms46g:sub”:

“system:serviceaccount:openshift-logging:logcollector”

 }

 }

 }]

}

EOF

45

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

5.	 Create the role using the trust policy and replacing <CLUSTERNAME> with the name of your cluster.
Filter the output and save the role ARN in a variable.

ROLE_ARN=$(aws iam create-role --role-name “RosaCloudWatch-<CLUSTERNAME>” \

 --assume-role-policy-document file://${HOME}/cloudwatch-trust-policy.json \

 --tags “Key=rosa-workshop,Value=true” \

 --query Role.Arn --output text)

6.	 Ensure the variable is set correctly.

echo $ROLE_ARN

Here is a sample role ARN.

arn:aws:iam::1234567890123:role/RosaCloudWatch-<CLUSTERNAME>

7.	 Attach the policy and role to use them with the service account.

aws iam attach-role-policy \

 --role-name <RosaCloudWatch-RoleName> \

 --policy-arn “${POLICY_ARN}”

Install OpenShift Service on AWS components

Follow these steps to install the Red Hat OpenShift logging operator.

1.	 Create an OperatorGroup for the logging system. An OperatorGroup provides multitenant configuration
by selecting target namespaces in which to generate required access for member operators. This example
creates an OperatorGroup called openshift-logging targeting the openshift-logging namespace.

cat << EOF | oc apply -f -

apiVersion: operators.coreos.com/v1

kind: OperatorGroup

metadata:

 name: openshift-logging

 namespace: openshift-logging

spec:

 targetNamespaces:

 - openshift-logging

EOF

46

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

2.	 Create a Subscription for the operator. This contains operator installation, management, and lifecycle
information, including the update channel, catalog sources, and installation namespace.

cat << EOF | oc apply -f -

apiVersion: operators.coreos.com/v1alpha1

kind: Subscription

metadata:

 labels:

 operators.coreos.com/cluster-logging.openshift-logging: “”

 name: cluster-logging

 namespace: openshift-logging

spec:

 channel: stable

 installPlanApproval: Automatic

 name: cluster-logging

 source: redhat-operators

 sourceNamespace: openshift-marketplace

EOF

3.	 Verify that installation is complete. Wait for this command to respond with deployment “cluster-logging-
operator” successfully rolled out.

oc -n openshift-logging rollout status deployment cluster-logging-operator

Grant access to Amazon CloudWatch

Secrets store sensitive information—API keys, passwords, and certificates, for example—that should not be
exposed in the source code. By storing data in a secret, developers can keep critical information separate from
the code, reducing the risk of accidental exposure. Secrets are typically referenced within applications using
methods that ensure that sensitive data is only accessible to authorized components.

Create a secret that lets the OpenShift Service on AWS service account access Amazon CloudWatch. This
example creates a secret called cloudwatch-credentials using the role ARN stored in a variable.

https://docs.openshift.com/container-platform/latest/operators/admin/olm-adding-operators-to-cluster.html

47

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

cat << EOF | oc apply -f -

apiVersion: v1

kind: Secret

metadata:

 name: cloudwatch-credentials

 namespace: openshift-logging

stringData:

 role_arn: ${ROLE_ARN}

EOF

Forward OpenShift Service on AWS logs to Amazon CloudWatch

ClusterLogForwarder custom resources let you send logs to third-party systems. With this resource, you can
define both outputs and pipelines. An output is a destination for log data, while a pipeline is the routing from
a log to an output. In this example, Amazon CloudWatch is an output.

ClusterLogging custom resources let you configure log collectors, storage, and visualization for the cluster.
For this example, fluentd is the log collector, however other settings like vector are possible based on your
logging substack.

Follow these steps to send logs from OpenShift Service on AWS to Amazon CloudWatch.

1.	 Create a ClusterLogForwarder custom resource. Observe that this custom resource uses many components
created earlier, including the openshift-logging namespace and OpenShift Service on AWS secret.

cat << EOF | oc apply -f -

apiVersion: logging.openshift.io/v1

kind: ClusterLogForwarder

metadata:

 name: instance

 namespace: openshift-logging

spec:

 outputs:

 - name: cw

 type: cloudwatch

 cloudwatch:

 groupBy: namespaceName

 groupPrefix: <CLUSTERNAME>

 region: $(aws configure get region)

https://www.fluentd.org
https://vector.dev/

48

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

 secret:

 name: cloudwatch-credentials

 pipelines:

 - name: to-cloudwatch

 inputRefs:

 - infrastructure

 - audit

 - application

 outputRefs:

 - cw

EOF

2.	 Create a ClusterLogging custom resource. This command instructs the logging system to begin forwarding
logs to Amazon CloudWatch.

cat << EOF | oc apply -f -

apiVersion: logging.openshift.io/v1

kind: ClusterLogging

metadata:

 name: instance

 namespace: openshift-logging

spec:

 collection:

 logs:

 type: fluentd

 forwarder:

 fluentd: {}

 managementState: Managed

EOF

3.	 Wait for OpenShift Service on AWS logs to arrive in Amazon CloudWatch.

watch aws logs describe-log-groups --log-group-name-prefix <CLUSTERNAME>

At first, you may see only empty log groups.

{

 “logGroups”: []

}

49

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

It may take up to 5 minutes for the log groups to begin filling.

{

 “logGroups”: [

 {

 “logGroupName”: “rosa-mkxrh.audit”,

 “creationTime”: 1710387473042,

 “metricFilterCount”: 0,

 “arn”:

“arn:aws:logs:us-east-2:1234567890123:log-group:rosa-CLUSTERNAME.audit:*”,

 “storedBytes”: 0,

 “logGroupClass”: “STANDARD”,

 “logGroupArn”:

“arn:aws:logs:us-east-2:1234567890123:log-group:rosa-CLUSTERNAME.audit”

 },

 {

 “logGroupName”: “rosa-mkxrh.infrastructure”,

 “creationTime”: 1710387437083,

 “metricFilterCount”: 0,

 “arn”:

“arn:aws:logs:us-east-2:1234567890123:log-group:rosa-CLUSTERNAME.
infrastructure:*”,

 “storedBytes”: 0,

 “logGroupClass”: “STANDARD”,

 “logGroupArn”:

“arn:aws:logs:us-east-2:1234567890123:log-group:rosa-CLUSTERNAME.infrastructure”

 }

]

}

4.	 You can also view the logs in the Amazon CloudWatch console.

50

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Integrate OpenShift Service on AWS
and Amazon CloudWatch using
the web console UI
This section shows you how to use the web console UI to integrate OpenShift Service on AWS
and Amazon CloudWatch.

Gather information

Follow these steps to collect key information about your OpenShift Service on AWS and AWS environments.

1.	 Obtain your AWS account ID from the AWS Console.

2.	 Find your OIDC details using the CLI.

Retrieve your cluster’s OIDC URL by using the oc command to interrogate Red Hat OpenShift’s authentication
API and find the serviceAccountIssuer value. This property is the identifier of the bound service account token
issuer. The OIDC URL is created when building your cluster using the OpenShift Service on AWS CLI. Consult
the documentation for more details about OIDC verification options.

oc get authentication.config.openshift.io cluster -o json | \

 jq -r .spec.serviceAccountIssuer

https://docs.openshift.com/rosa/rosa_architecture/rosa-oidc-overview.html

51

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Prepare Amazon CloudWatch

Follow these steps to create the IAM policies and roles that allow Red Hat OpenShift service accounts to access
Amazon CloudWatch.

1.	 Navigate to IAM > Policies in your AWS console and click Create Policy.

2.	 Select JSON and paste the following policy in the Policy editor window. This policy lets the service account
create, view, and push to log groups and streams in Amazon CloudWatch.

{

 “Version”: “2012-10-17”,

 “Statement”: [

 {

 “Effect”: “Allow”,

 “Action”: [

 “logs:CreateLogGroup”,

 “logs:CreateLogStream”,

 “logs:DescribeLogGroups”,

 “logs:DescribeLogStreams”,

 “logs:PutLogEvents”,

 “logs:PutRetentionPolicy”

],

 “Resource”: “arn:aws:logs:*:*:*”

 }

]

}

52

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

3.	 Click Next.

4.	 In the Review and create form, set the Policy name field to RosaCloudWatch.

5.	 Click Create Policy.

6.	 Search for the new RosaCloudWatch policy.

53

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

7.	 Click RosaCloudWatch policy. Find and record the ARN.

8.	 Navigate to IAM > Roles in your AWS console and click Create role.

9.	 Select Custom trust policy. This policy specifies the trusted account members allowed to assume the
CloudWatch role.

54

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

10.	Insert the AWS account ID and OIDC endpoint into the following trust policy and paste it in the editing window.

{

 “Version”: “2012-10-17”,

 “Statement”: [{

 “Effect”: “Allow”,

 “Principal”: {

 “Federated”: “arn:aws:iam::<AWS_ACCOUNT>:oidc-provider/<OIDC_ENDPOINT>”

 },

 “Action”: “sts:AssumeRoleWithWebIdentity”,

 “Condition”: {

 “StringEquals”: {

 “<OIDC_ENDPOINT>:sub”:

“system:serviceaccount:openshift-logging:logcollector”

 }

 }

 }]

}

11.	 Click Next.

12.	Set the Role name field to RosaCloudWatch-<CLUSTERNAME>, replacing <CLUSTERNAME> with the name
of your cluster.

55

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

13.	Navigate to the Permission policies section in the Permissions tab of the RosaCloudWatch-
<CLUSTERNAME> role.

14.	Choose Attach policies in the Add permissions menu to attach the RosaCloudWatch policy to the role.

15.	Search for the RosaCloudWatch policy. Select it and click Add permissions.

16.	Confirm that the policy is now attached to the role.

56

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Install OpenShift Service on AWS components

Follow these steps to install the Red Hat OpenShift logging operator.

1.	 Navigate to Operators > OperatorHub in the OpenShift Service on AWS console.

2.	 Search for OpenShift Logging. Then click Red Hat OpenShift Logging.

3.	 Accept the defaults and install the Red Hat OpenShift logging operator. Wait for the operator to report ready
for use.

57

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Grant access to Amazon CloudWatch

Secrets store sensitive information—API keys, passwords, and certificates, for example—that should not be
exposed in the source code. By storing data in a secret, developers can keep critical information separate from the
code, reducing the risk of accidental exposure. Secrets are typically referenced within applications using methods
that ensure that sensitive data is only accessible to authorized components.

Follow these steps to allow the OpenShift Service on AWS service account to access Amazon CloudWatch.

1.	 Navigate to Workloads > Secrets in the OpenShift Service on AWS console.

2.	 Switch to the openshift-logging projects. You may need to toggle Show default projects.

3.	 Choose Key/value secret in the Create menu.

58

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

4.	 Set the Secret name field to cloudwatch-credentials.

5.	 Set the Key field to role_arn.

6.	 Set the Value field to the ARN of the RosaCloudWatch-CLUSTERNAME role. For this example, the ARN
is arn:aws:iam::1234567890123:role/RosaCloudWatch-CLUSTERNAME.

7.	 Click Create.

Forward OpenShift Service on AWS logs to Amazon CloudWatch

ClusterLogForwarder custom resources let you send logs to third-party systems. With this resource, you can
define both outputs and pipelines. An output is a destination for log data, while a pipeline is the routing from
a log to an output. In this example, Amazon CloudWatch is an output.

ClusterLogging custom resources let you configure log collectors, storage, and visualization for the cluster.
For this example, fluentd is the log collector, however other settings like vector are possible based on your
logging substack.

https://www.fluentd.org
https://vector.dev/

59

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Follow these steps to send logs from OpenShift Service on AWS to Amazon CloudWatch.

1.	 Navigate to Operators > Installed Operators in the OpenShift Service on AWS console and select the Red Hat
OpenShift logging operator.

2.	 Navigate to the Cluster Log Forwarder tab and click Create instance under the Cluster Log Forwarder
provided API.

3.	 Select YAML view. The Create ClusterLogForwarder UI lets you manually set all fields, however, it is easier
to create this custom resource using YAML.

4.	 Update the following custom resource definition with your AWS region and OpenShift Service on AWS cluster
name. Then paste it into the editing window.

apiVersion: logging.openshift.io/v1

kind: ClusterLogForwarder

metadata:

 name: instance

 namespace: openshift-logging

spec:

 outputs:

 - name: cw

 type: cloudwatch

60

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

 cloudwatch:

 groupBy: namespaceName

 groupPrefix: <CLUSTERNAME>

 region: <AWS_REGION>

 secret:

 name: cloudwatch-credentials

 pipelines:

 - name: to-cloudwatch

 inputRefs:

 - infrastructure

 - audit

 - application

 outputRefs:

 - cw

5.	 Click Create ClusterLogForwarder. You can view the new resource in the console.

6.	 Navigate to the Cluster Logging tab and click Create ClusterLogging.

61

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

7.	 Select YAML view and paste the following custom resource definition into the editing window.

apiVersion: logging.openshift.io/v1

kind: ClusterLogging

metadata:

 name: instance

 namespace: openshift-logging

spec:

 collection:

 logs:

 type: fluentd

 forwarder:

 fluentd: {}

 managementState: Managed

8.	 Wait for the Status column to report Ready.

9.	 You can now view your logs in the Amazon CloudWatch console.

Contents | Chapter 1 | Chapter 2 | Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6 | Learn more

Copyright © 2024 Red Hat, Inc. Red Hat, the Red Hat logo, and OpenShift are trademarks or registered trademarks of Red Hat, Inc. or its
subsidiaries in the United States and other countries. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
The IBM Logo is a registered trademark of IBM in the United States and other countries and is used under license. All other trademarks are the
property of their respective owners.

0824_KVM

Learn more

Red Hat OpenShift Service on AWS (ROSA) provides a fully managed application platform that lets you run
Red Hat OpenShift clusters without worrying about the underlying infrastructure. As a first-party offering,
OpenShift Service on AWS integrates efficiently with AWS services like Amazon Cognito and Amazon CloudWatch,
allowing you to use your preferred tools and services. Read more about OpenShift Service on AWS and get
started with a free, 8-hour hands-on experience.

For more information and support during your OpenShift Service on AWS evaluation, contact Red Hat and AWS.

https://www.redhat.com/en/technologies/cloud-computing/openshift/aws
https://www.redhat.com/en/technologies/cloud-computing/openshift/rosa-hands-on

