Skip to contentRed Hat

Navigation

AI
  • Our approach

    • News and insights
    • Technical blog
    • Research
    • Live AI events
    • Explore AI at Red Hat
  • Our portfolio

    • Red Hat AI
    • Red Hat Enterprise Linux AI
    • Red Hat OpenShift AI
    • Red Hat AI Inference Server New
  • Engage & learn

    • AI learning hub
    • AI partners
    • Services for AI
Hybrid cloud
  • Use cases

    • Artificial intelligence

      Build, deploy, and monitor AI models and apps.

    • Linux standardization

      Get consistency across operating environments.

    • Application development

      Simplify the way you build, deploy, and manage apps.

    • Automation

      Scale automation and unite tech, teams, and environments.

    • Virtualization

      Modernize operations for virtualized and containerized workloads.

    • Security

      Code, build, deploy, and monitor security-focused software.

    • Edge computing

      Deploy workloads closer to the source with edge technology.

    • Explore solutions
  • Solutions by industry

    • Automotive
    • Financial services
    • Healthcare
    • Industrial sector
    • Media and entertainment
    • Public sector
    • Telecommunications

Discover cloud technologies

Learn how to use our cloud products and solutions at your own pace in the Red Hat® Hybrid Cloud Console.

Products
  • Platforms

    • Red Hat AI

      Develop and deploy AI solutions across the hybrid cloud.

    • Red Hat Enterprise Linux

      Support hybrid cloud innovation on a flexible operating system.

      New version
    • Red Hat OpenShift

      Build, modernize, and deploy apps at scale.

    • Red Hat Ansible Automation Platform

      Implement enterprise-wide automation.

  • Featured

    • Red Hat OpenShift Virtualization Engine
    • Red Hat OpenShift Service on AWS
    • Microsoft Azure Red Hat OpenShift
    • See all products
  • Try & buy

    • Start a trial
    • Buy online
    • Integrate with major cloud providers
  • Services & support

    • Consulting
    • Product support
    • Services for AI
    • Technical Account Management
    • Explore services
Training
  • Training & certification

    • Courses and exams
    • Certifications
    • Red Hat Academy
    • Learning community
    • Learning subscription
    • Explore training
  • Featured

    • Red Hat Certified System Administrator exam
    • Red Hat System Administration I
    • Red Hat Learning Subscription trial (No cost)
    • Red Hat Certified Engineer exam
    • Red Hat Certified OpenShift Administrator exam
  • Services

    • Consulting
    • Partner training
    • Product support
    • Services for AI
    • Technical Account Management
Learn
  • Build your skills

    • Documentation
    • Hands-on labs
    • Hybrid cloud learning hub
    • Interactive learning experiences
    • Training and certification
  • More ways to learn

    • Blog
    • Events and webinars
    • Podcasts and video series
    • Red Hat TV
    • Resource library

For developers

Discover resources and tools to help you build, deliver, and manage cloud-native applications and services.

Partners
  • For customers

    • Our partners
    • Red Hat Ecosystem Catalog
    • Find a partner
  • For partners

    • Partner Connect
    • Become a partner
    • Training
    • Support
    • Access the partner portal

Build solutions powered by trusted partners

Find solutions from our collaborative community of experts and technologies in the Red Hat® Ecosystem Catalog.

Search

I'd like to:

  • Start a trial
  • Manage subscriptions
  • See Red Hat jobs
  • Explore tech topics
  • Contact sales
  • Contact customer service

Help me find:

  • Documentation
  • Developer resources
  • Skills assessments
  • Architecture center
  • Security updates
  • Support cases

I want to learn more about:

  • AI
  • Application modernization
  • Automation
  • Cloud-native applications
  • Linux
  • Virtualization
ConsoleDocsSupportNew For you

Recommended

We'll recommend resources you may like as you browse. Try these suggestions for now.

  • Product trial center
  • Courses and exams
  • All products
  • Tech topics
  • Resource library
Log in

Sign in or create an account to get more from Red Hat

  • World-class support
  • Training resources
  • Product trials
  • Console access

A subscription may be required for some services.

Log in or register
Contact us
  • Home
  • Resources
  • Top 5 ways developers and data scientists can collaborate

Top 5 ways developers and data scientists can collaborate

April 5, 2022•
Resource type: Checklist
Download PDF

Data scientists don’t bite

You need to know how data scientists work and how to work with them to build effective artificial intelligence (AI)-based applications. That means knowing the basics of AI and how to collaborate with your data science colleagues. Here are the top five things you need to know when working with data scientists and building AI-driven intelligent applications. Use this checklist as a guide to forming good working relationships and exceptional application development collaborations.

1  Understand how data scientists work

Data scientists are usually more concerned with building and refining their models than they are with application development or integrating their models into a piece of software. They rarely want to be involved in building continuous integration/continuous delivery (CI/CD) pipelines or writing application code and use tools you may not be familiar with, like Python, R, and Jupyter Notebooks. 

They probably won’t be the first ones to suggest an open collaboration with you–even though you are all working toward the same goals. Solid, consistent teamwork between you and your data science team is essential to building good applications. Active collaboration results in:

  • The deployment of intelligent, data-driven applications that effectively take advantage of AI.
  • The opportunity for data scientists to put their modeling work to use in deployable solutions that add value to your company and its customers. 

It will likely fall upon you to make the initial outreach and facilitate the collaborative experience with your data science colleagues. Adopt the guidance in this checklist to find out how to connect with your data science team in a beneficial way.


2  Find common ground

Explaining your development practices and seeing how they complement your data scientists’ efforts is important to creating frictionless collaboration and an experience that works for everyone. To that end:

Encourage frequent touchpoints. Setting up frequent and regular touchpoints is best to help ensure that the projects you work on together remain on track.

Respect boundaries. Data scientists may not want or need to know how you get applications into production. Although MLOps is a popular concept, some scientists prefer to email you their Jupyter Notebooks. Respect their interests and the ways they like to work, and they will reciprocate.

Share each other’s processes. Besides learning how data scientists work, share your processes and the tools you use in production, like Git, Tekton, or Kubernetes. In the spirit of open source, give them a peek into your processes.

Use a common platform for collaboration.  Common cloud-native AI development platforms like Red Hat® OpenShift® AI support and encourage collaboration between you and your data science team. The platform democratizes the use of AI tools and allows teams to implement and accelerate intelligent application development.


3  Learn to work with model training tools

Learn at least the basics around some of the model training tools data scientists use regularly. Having working knowledge of model training tools will help you understand how the models are built. These are some of the most popular model training tools and libraries.

  • Jupyter and PyCharm development environments
  • PyTorch
  • scikit-learn
  • TensorFlow

Familiarizing yourself with these and other tools improves your odds of successfully creating deployed model applications. It will also give you a better understanding of the work that goes into the creation of the models and help you to work out issues when models don’t integrate into your intelligent applications smoothly. 


4  Keep using your favorite tools and processes 

When working with data scientists and AI, you’re going to need to learn a lot of new processes and a few new tools. But you can keep using many of your favorite tools to do your logic. Application code and modeling can be done in any preferred language or framework. 

For example, as a Quarkus developer you can do your application logic in Quarkus and have it make an application programming interface (API) call to a representational state transfer (REST) endpoint, while your data scientists handle the actual data processing and predictions—through a tool like Python or R. Although AI and data science is complex, keep your work simple by using familiar tools and processes.


5  Remember the model is a part of the application

The model is important; so are the MLOps behind the model. Here are four things you will need to do to ensure your models continue to perform well when they are put into production.  

  • Build a model serving infrastructure that works for the application you’re developing.
  • Create new or extend existing CI/CD pipelines to handle both training and serving the model.
  • Scale the model serving application.
  • Integrate streaming data services such as Apache Kafka and other data gathering components.

Finally, the deployment of your application is only the beginning. Models keep changing and will need to be monitored. Work closely with your data science team to define which metrics you or your operations counterparts need to monitor to prevent model drift. If an issue or change occurs, collaborate with your data scientists to refine and improve your models.

Learn more about Red Hat OpenShift AI

Visit Red Hat OpenShift AI and read our ebook

Give it a try

Try Red Hat OpenShift AI and preview a demonstration

Tags:Artificial intelligence, Application development and delivery, Cloud services, DevOps

Red Hat logoLinkedInYouTubeFacebookX

Products & portfolios

  • Red Hat AI
  • Red Hat Enterprise Linux
  • Red Hat OpenShift
  • Red Hat Ansible Automation Platform
  • Cloud services
  • See all products

Tools

  • Training and certification
  • My account
  • Customer support
  • Developer resources
  • Find a partner
  • Red Hat Ecosystem Catalog
  • Documentation

Try, buy, & sell

  • Product trial center
  • Red Hat Store
  • Buy online (Japan)
  • Console

Communicate

  • Contact sales
  • Contact customer service
  • Contact training
  • Social

About Red Hat

Red Hat is an open hybrid cloud technology leader, delivering a consistent, comprehensive foundation for transformative IT and artificial intelligence (AI) applications in the enterprise. As a trusted adviser to the Fortune 500, Red Hat offers cloud, developer, Linux, automation, and application platform technologies, as well as award-winning services.

  • Our company
  • How we work
  • Customer success stories
  • Analyst relations
  • Newsroom
  • Open source commitments
  • Our social impact
  • Jobs

Select a language

  • 简体中文
  • English
  • Français
  • Deutsch
  • Italiano
  • 日本語
  • 한국어
  • Português
  • Español

Red Hat legal and privacy links

  • About Red Hat
  • Jobs
  • Events
  • Locations
  • Contact Red Hat
  • Red Hat Blog
  • Inclusion at Red Hat
  • Cool Stuff Store
  • Red Hat Summit
© 2025 Red Hat

Red Hat legal and privacy links

  • Privacy statement
  • Terms of use
  • All policies and guidelines
  • Digital accessibility